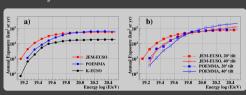
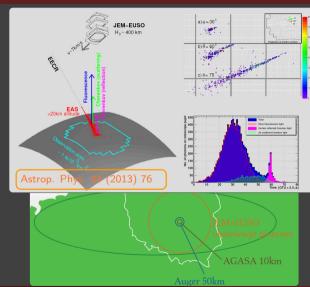
Status of the JEM-EUSO Collaboration: Ground, Balloon and Space-Based Observations of UHECRs and Related Phenomena

Zbigniew Plebaniak


The JEM-EUSO Collaboration


Physics Department University of Rome & INFN, Tor Vergata

PAiP-2025 — Particle Astrophysics in Poland, February 21st 2025, Warsaw, Poland

The JEM-EUSO observation principle

- Observations of the EAS from space in UV
- around 10 times higher exposure than for ground observatories
- → angular resolution: 3 8°
- \rightarrow X_{max} resolution: 50 100 g cm⁻²
- energy resolution: 15 30%
- energy threshold: >7·10¹⁹eV
 - > 1000 events expected during 3 years of mission

The JEM-EUSO Scientific Program

Joint Exploratory Missions for an Extreme Universe Space Observatory

EUSO-TA (2013 - now, ground)

EUSO-Balloon (2014, balloon)

TUS (2016, satellite*)

EUSO-SPB1 (2017, balloon)

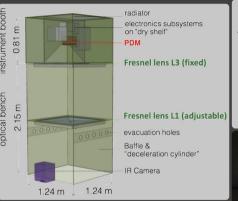
Mini-EUSO (2019 - now, space)

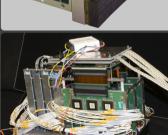
EUSO-SPB2 (2016, balloon)

POEMMA Balloon with Radio (Planned - 2027, balloon)

K-EUSO (Planned - on hold, ISS)

POEMMA (Planned - 2030, satellite)

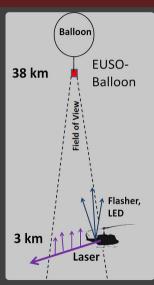

Since 2004 - 16 countries, \sim 100 institutions and 6 space agencies



EUSO-Balloon - 2014 - CNES - The JEM-EUSO pathfinder

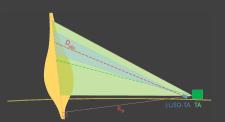
- Spectral range:290-430nm
- → FoV: $\sim 10^{\circ}$ (0.21° / pix)
- \rightarrow Pupil area: 0.91m^2
- Optical system: two Fresnel lenses
- → FS: 2304 (48×48) pixels
- single photon counting mode with 2.5 μs time resolution (GTU)
- → Double pulse resolution: ~10ns

Space Sci Rev 218. 3 (2022)

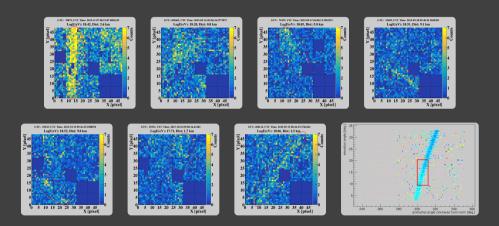

The HVPS system fully designed and produced in Poland

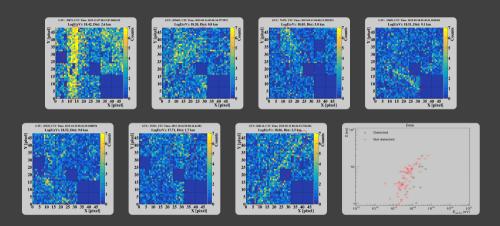
16.7 cm

EUSO-Balloon, 2014 - first flight

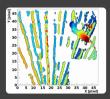

The very first detection of ultra fast UV trackt "from above" August 25, 2014, EUSO-Balloon

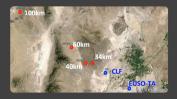
EUSO-TA - 2013 - now - cooperation with Telescope Array

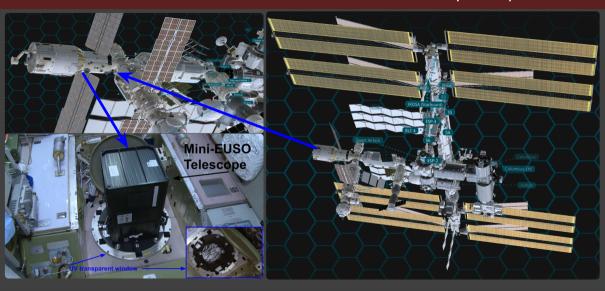

- EUSO-TA telescope is located in front of TAFD-BRM station, Utah, USA
 - powered and triggered by TA station
 - desert and dark sky, good conditions for testing UV detectors probing atmospheric transmission etc.
 - Central Laser Facility and Electron Light Source in FoV



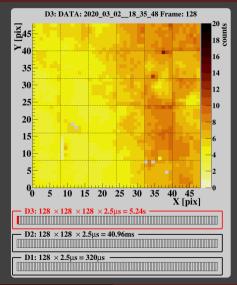
EUSO-TA results - detected UHECR events

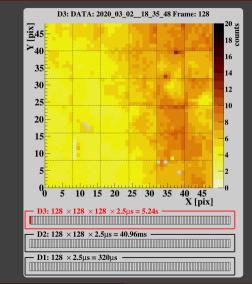



EUSO-TA results - detected UHECR events


EUSO-TA - calibration with UV lasers and stars

- Central Laser Facility
 - Vertically emitted UV signals at the distance of 21 km
 - energy range 4-6mJ (2.2mJ corresponds to 10¹⁹ eV shower)
- Global Laser System (GLS)
 - ➤ The prototype of laser station on mobile to test response of EUSO detectors
 - ➤ Pulses generated as equivalent of EAS signals at 10¹⁹ 10²¹ eV
 - Automatic changing of pointing direction allowing for swipes through the field of view




Mini-EUSO - 2019 - now - The first EUSO telescope in space

Mini-EUSO is taking data by counting photoelectrons in the UV range during observations of the Earth's atmosphere in nadir. The detector efficiency is about 6%.

Mini-EUSO is taking data by counting photoelectrons in the UV range during observations of the Earth's atmosphere in nadir. The detector efficiency is about 6%.

Mini-EUSO is taking data by counting photoelectrons in the UV range during observations of the Earth's atmosphere in nadir. The detector efficiency is about 6%.

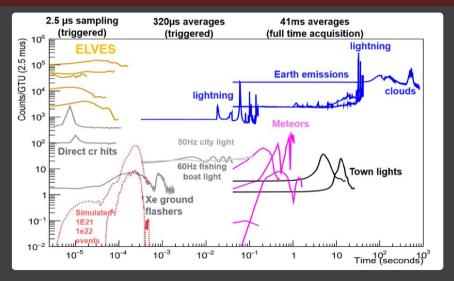
- continuously when the detector is on. Counts are summarized over >16k GTUs (40.96 ms).
- D2 triggered on data with counts integrated over 128 GTU
 (320 ws) 4 D2 packets can be stored during 1 D3 period
- D1 triggered on data with counts integrated over a single GTU (2.5 μs). 4 D1 packets can be stored during 1 D3
- with the background level, determined by averaging over 128 GTUs, to look for an excess. If the signal is 8*a* above background, the event is triggered, the whole focal surface is read out, and a packet of 128 GTUs is stored, centered on the trigger

Mini-EUSO is taking data by counting photoelectrons in the UV range during observations of the Earth's atmosphere in nadir. The detector efficiency is about 6%.

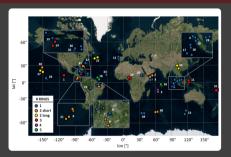
- continuously when the detector is on. Counts are summarized over >16k GTUs (40.96 ms).
- D2 triggered on data with counts integrated over 128 GTUs (320 µs). 4 D2 packets can be stored during 1 D3 period.
 - D1 triggered on data with counts integrated over a single GTU (2.5 μs). 4 D1 packets can be stored during 1 D3 period.
- Pixel signal is integrated over 8 consecutive GTUs and compared with the background level, determined by averaging over 128 GTUs, to look for an excess. If the signal is 8σ above background the event is triggered, the whole focal surface is read out, and a part of 128 GTUs is stored as at the trigger.

Mini-EUSO is taking data by counting photoelectrons in the UV range during observations of the Earth's atmosphere in nadir. The detector efficiency is about 6%.

- continuously when the detector is on. Counts are summarized over >16k GTUs (40.96 ms).
- D2 triggered on data with counts integrated over 128 GTUs
 (320 us). 4 D2 packets can be stored during 1 D3 period.
- D1 triggered on data with counts integrated over a single GTU (2.5 μs). 4 D1 packets can be stored during 1 D3 period.
- Pixel signal is integrated over 8 consecutive GTUs and compared with the background level, determined by averaging over 128 GTUs, to look for an excess. If the signal is 8σ above background, the event is triggered, the whole focal surface is read out, and a packet of 128 GTUs is stored, centered on the trigger

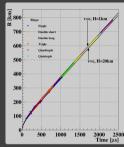

Mini-EUSO is taking data by counting photoelectrons in the UV range during observations of the Earth's atmosphere in nadir. The detector efficiency is about 6%.

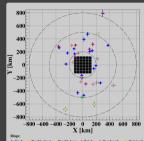
The counts are summarized in 2.5 microsecond GTUs in a matrix of 48x48 pixels and saved in packets of 128 frames. Data are stored in three modes:

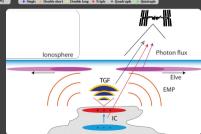

- continuously when the detector is on. Counts are summarized over >16k GTUs (40.96 ms).
- D2 triggered on data with counts integrated over 128 GTUs (320 µs). 4 D2 packets can be stored during 1 D3 period.
- D1 triggered on data with counts integrated over a single GTU (2.5 \(\mu s\)). 4 D1 packets can be stored during 1 D3 period.

Pixel signal is integrated over 8 consecutive GTUs and compared with the background level, determined by averaging over 128 GTUs, to look for an excess. If the signal is 8σ above background, the event is triggered, the whole focal surface is read out, and a packet of 128 GTUs is stored, centered on the trigger.

Mini-EUSO - all types of measured signals

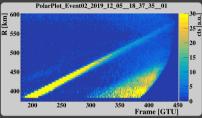


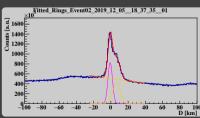

Mini-EUSO - detection of the ELVES from space



Emission of Light and Very low frequency perturbations due to Electromagnetic pulse Sources

37 ELVES events have been detected and analyzed in the first 160 hours of Mini-EUSO data

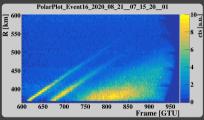


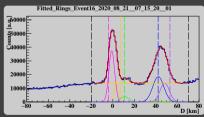


Double-ringed ELVES with short delay and dynamic halo

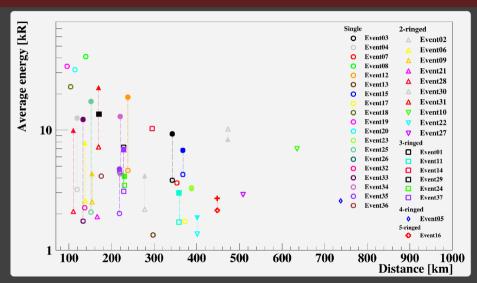
EVENT 2 - 2019-12-05 18:37:35

A double-ringed event with inner-peak delay of about 25 μs and ring widths up to \sim 7km. Event observed at >550km distance. The short interval multi-rings ELVES are so close one another, the inter-ring emission does not return to background values. There are 5 more events of this class.



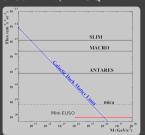


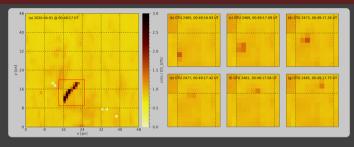
Five-ringed ELVES with dynamic halo

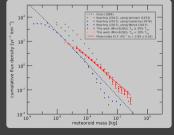

EVENT 16 - 2020-08-21 07:15:20

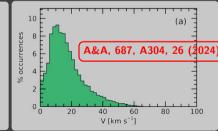
A five-ringed event composed of three main peaks with the weakest in the center. Both of the two brightest rings show two short delay events with delays of 15 and 19 μs . The duration of the whole ELVES event is reaching 160 μs The dynamic halo is delayed by $\sim\!250\mu s$.

Mini-EUSO - ELVES - average intensity

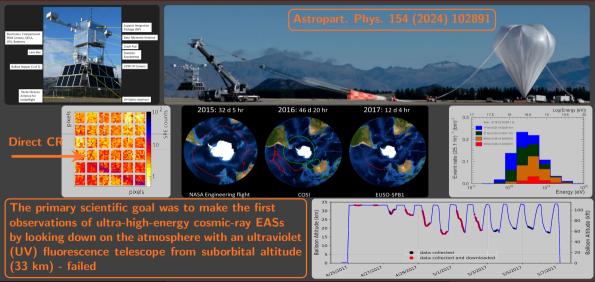

Mini-EUSO - UV maps of the Earth


Observation of night-time emissions of the Earth in the near UV range from the International Space Station with the Mini-EUSO detector, Remote Sensing of Environment 284 (2023) 113336

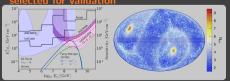

Mendeley database: https://data.mendeley.com/datasets/57fmn7rh4n/4 Data in Brief 48 (2023) 109105

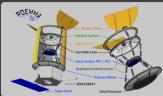

Mini-EUSO - meteors from space

- → 24 000 meteor events from 40 Mini-EUSO sessions (~6 days)
- mass range: 10^{-5} 10^{-1} kg, mag<+6
- mass index s $= 2.09 \pm 0.02$ for M_{inf}^{1-s}
- three events with velocity>85 km s, no SQM candidates

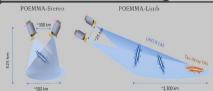


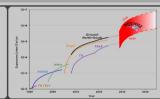
EUSO-SPB1 - 2017 (April 24 23:51 UT) - NASA

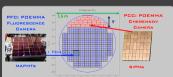



Probe Of Extreme Multi-Messenger Astrophysics (POEMMA)

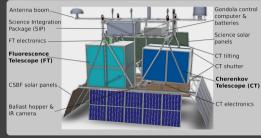
The main scientific objectives:

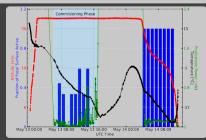

- Discover the nature and origin of the highest-energy particles in the universe
- Discover neutrino emission above 20 PeV associated with extreme astrophysical transients
- Probe particle interactions at extreme energies
- Observe TLEs
- Observe meteors
- Search for exotic particles


NASA probe-class mission selected for validation



Telescope:	Instrument		Spacecraft	
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min
	Primary Mirror	4 m diam.	Pointing Res.	0.1°
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°
	Focal Surface	1.6 m diam.	Clock synch.	10 ns
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days
	Pixel FoV	0.084°	Communication	S-band
PFC	MAPMT (1µs)	126,720 pixels	Wet Mass	3,450 kg
PCC	SiPM (20 ns)	15,360 pixels	Power (w/cont)	550 W
Observatory	Each Telescope		Mission	(2 Telescopes)
	Mass	1,550 kg	Lifetime	3 year (5 year goal)
	Power (w/cont)	700 W	Orbit	525 km, 28.5° Inc
	Data	< 1 GB/day	Orbit Period	95 min
			Telescope Sep.	~25 - 1000 km





JCAP 06 (2021) 007

EUSO-SPB2 - 2023 (May 13th) - NASA

- → Expected flight time: 100 days
- Real flight time: 37 hours
- \rightarrow Weight: \sim 1.5 t
- Cherenkov Telescope
- → Fluorescence Telescope (3×PDM)
- → Optics: 2x Schmidt optics
- IR camera
- altitude: 33km
- Target of Opportunity (rotator, cherenkov camera)

EUSO-SPB2 - Fluorescence camera

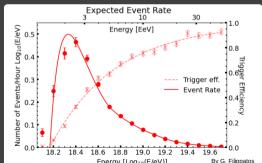
→ Pixels: 6912

 \rightarrow Integration time: 1μ s

Detection window: 290-430 nm

FoV: 12° x 36°

→ Pointing: nadir


Energy threshold: 2EeV (peak sensitivity at 4EeV)

Expected event rate: 0.12 per hour

No detected events

Astropart, Phys., 165, 103046, (2025)

EUSO-SPB2 - Cherenkov camera

- ➡ Pixels: 512 (SiPM)
- → Integration time: 10ns
- → Detection window: 200-800nm
- **→** FoV: 6.4° × 12.8°
- Bi-focal optics
- → Pointing: 2.5° to -13.1°
- Above the limb threshold: 10PeV
- ➡ Below the limb: ToO, no events

Below the lillib. 100, no events

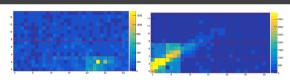
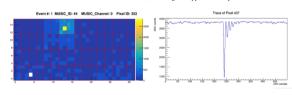
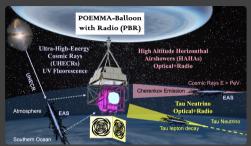
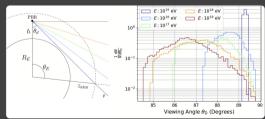


Figure 7: Candidates for Cosmic ray induced air shower events, Left: BiFocal, Right: Cherenkov cone. Both images were taken as the focal plane was pointed at the limb, therefore the top half of the display is below the Earth's limb while the bottom half is above, the image is flipped due to optics.


Figure 8: Possible direct cosmic-ray hit

Poemma Balloon with Radio (PBR) - planned for 2027

- ➡ Florescence Telescope (4xPDM) the polish group already provided HVPS modules
- Expected flight time: 100 days
- → FT: 4×PDM, 9216 pix
- → CT: 2048 pix
- → Radio: 50-500MHz, 60×60 deg, E>10¹⁸eV
- → HAHAs: >0.4 PeV, 60 events per hour
- ➡ Target of Opportunity

NIMA 1069, 169819 (2024)

Polish group in JEM-EUSO - 2025

Polish institutions involved in JEM-EUSO in 2025:

- University of Warsaw (1)
- Stefan Batory Academy
 of Applied Sciences, Skierniewice (1)
- National Centre for Nuclear Research, Warsaw (2)
- University of Lodz (1)
- no affiliation (1)

Currently no financial support

Thank You for Your Attention