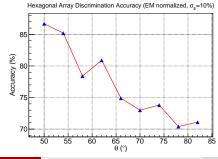
A strong dependence of the radio emission of air showers on X_{max} and primary composition: Revisiting the Radio LDF.

Washington Rodrigues de Carvalho Jr.

Faculty of Physics, University of Warsaw, Poland

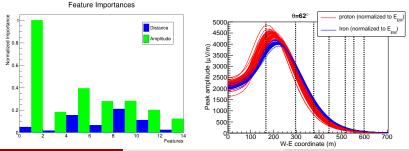
carvajr@gmail.com

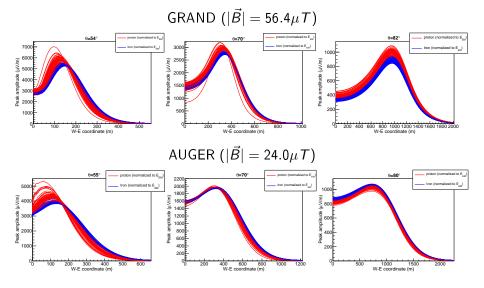
PAiP-2025, Warsaw February 21st, 2025



- Motivation: ML Random Forest primary composition discrimination method (using simulated events at the GRAND prototype):
 - Analysis uncovered a strong electric field amplitude dependence on X_{\max} , even accounting for the EM energy of the showers.
- Objective: Explain this effect, in a semi-quantitative way, in terms of two simple competing scalings of the electric field
 - Radio emission: E-field dependence on distance and air density
 - Proposed scalings and loss of coherence
 - Predictions and comparison to full simulations
 - Conclusions

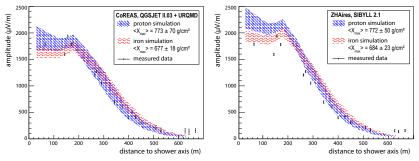
Motivation: ML discrimination


- We developed a Machine Learning (ML) Random Forest algorithm
 - Discriminates between heavy (Fe) and light (p) primary compositions on an event-by-event basis (both at GRAND and a generic array)
 - Bypasses any X_{max} reconstruction and infers composition directly
 - Very simple features: just antenna distances and field amplitudes
 - Unexpected good accuracies, even with a huge 30% energy smearing
- Analysis of the feature importances: proton showers seemed to be brighter than Fe near the core on most geometries


Explaining the parameter importances: Example at $heta=62^\circ$

- Most important features:
 - Amplitude of the closest antenna followed by the amplitude of the third closest antenna, and then decreasing for larger distances
- Observed a strong and well behaved amplitude dependence on X_{max} :
 - Effect is very large
 - Even accounting for the different EM energy of the showers
 - An X_{max} dependence also equates to a composition dependence
 - This effect can fully explain the behavior of the feature importances and is what the forest uses to obtain such good accuracies

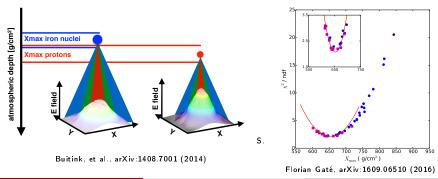
Washington Carvalho (Univ. of Warsaw)


Example LDFs: Behavior depends on zenith and site (\vec{B})

Effect was seen before, but historically disregarded

- This dependence was seen before, but was never fully pursued
- Mostly dismissed as just an EM/missing energy effect
- This effect was historically overlooked!
 - Introduction of the LOFAR X_{max} reconstruction (χ^2 based, "black-box")
 - People stopped looking at LDFs for multiple compositions

First comparison between CoREas, ZHAireS and AERA data (ca. 2013):


Tim Huegue, arXiv:1310.6927, Braz. J. Phys., 44, 5, 520-529, (2014)

Washington Carvalho (Univ. of Warsaw)

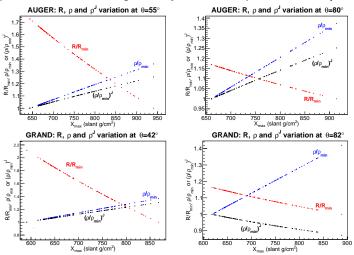
Effect was seen before, but historically disregarded

- This dependence was seen before, but was never fully pursued
- Mostly dismissed as just an EM/missing energy effect
- This effect was historically overlooked!
 - Introduction of the LOFAR X_{max} reconstruction (χ^2 based, "black-box")
 - People stopped looking at LDFs for multiple compositions

LOFAR X_{max} reconstruction method ("black-box")

Why does the amplitude depend on X_{max} ?

- Vector potential contribution from a single finite particle track: $\vec{A}(t, \hat{u}) = \frac{\mu e}{4\pi R c^2} \vec{V}_{\perp} \frac{\Theta(t - t_1^{det}) - \Theta(t - t_2^{det})}{1 - n\vec{\beta} \cdot \hat{u}}, \quad \vec{E} = -\frac{\partial \vec{A}}{\partial t} \quad (\text{ZHS formalism})$
- Emission consistent with 2 main emission mechanisms:
 - Askaryan or charge excess (R only) and geomagnetic (R and \vec{v}_{\perp})
- - Governed by the drift velocity $v_d \propto 1/
 ho$, akin to a terminal velocity

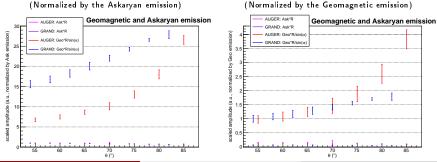

• $\vec{\mathbf{v}}_{\perp} \propto \mathbf{v}_d \propto 1/\rho \rightarrow \vec{\mathbf{v}}_{\perp} \propto 1/\rho$

- As X_{max} increases the shower develops lower in the atmosphere, so:
 - The distance *R* from *X_{max}* to the array decreases with *X_{max}* :
 - 1/R scaling \rightarrow *increases* field as X_{max} increases
 - The air density ρ at X_{max} increases with X_{max} , decreasing v_d and \vec{v}_{\perp} :
 - $1/\rho$ scaling $| \rightarrow decreases$ field as X_{max} increases
 - Two **competing** effects as X_{max} varies!

Washington Carvalho (Univ. of Warsaw)

R and ho variations just due to shower geometry

• The variation of $R = R(\theta, X_{max})$ and $\rho = \rho(\theta, X_{max})$ with X_{max} only depend on the shower geometry and atmospheric model (no sims)

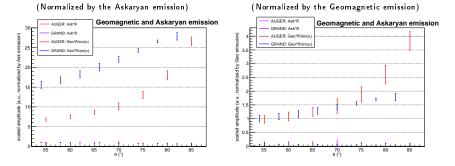

Washington Carvalho (Univ. of Warsaw)

Amplitude scaling with R: valid for the whole atmosphere

- Average peak amplitudes as a function of θ , multiplied by R, for each emission mechanism separately (Ask and Geo)
- The Askaryan emission is almost constant for all θ :

Washington Carvalho (Univ. of Warsaw)

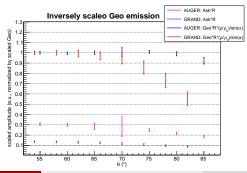
- Amplitude scales roughly with 1/R over the whole atmosphere
- Much higher geomagnetic emission at GRAND than at AUGER
 - As expected, due to $|\vec{B}|_{Auger} = 24.0 \mu T$, $|\vec{B}|_{Grand} = 56.5 \mu T$
- But the geomagnetic emission increases much faster at AUGER. Why?



Revisiting the Radio LDF

(Normalized by the Geomagnetic emission)

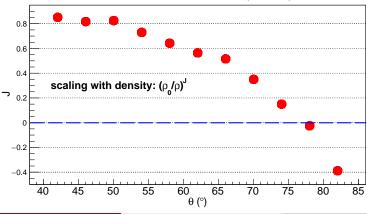
Loss of coherence at low air densities


- At lower densities (higher heta) the drift velocity $v_d \propto 1/
 ho$ increases:
 - Deflections due to the Lorentz force also increases
- Bigger deflections introduce extra time delays that lower the coherence of the emission: JCAP08, 015, (2023), JCAP05, 055, (2024) and PRL132, 231001, (2024)
- This loss of coherence also increases with $|\vec{B}|$ (bigger Lorentz force):
 - At GRAND, the higher geomagnetic field increases coherence loss
 - So, the geomagnetic emission increases less with θ at <code>GRAND</code>

Washington Carvalho (Univ. of Warsaw)

Amplitude scaling with the density ho

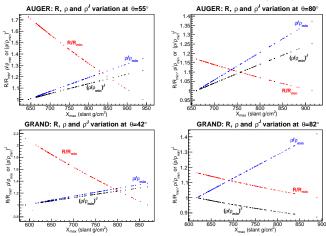
- ullet The geomagnetic emission scales only very roughly with 1/
 ho
 - As ho decreases, the increase in v_d and $ec{v}_\perp$ leads to higher fields
 - But the loss of coherence diminishes the strength of this 1/
 ho scaling
- Inversely scaled geomagnetic component: Geo $R(
 ho/
 ho_0)/\sin(lpha)$
 - ullet While the (1/
 ho) linearity holds, this value should be constant
- Much higher $|\vec{B}|$ at GRAND increases coherence loss:
 - The $(1/\rho)$ scaling starts to loose linearity much sooner at GRAND.



Washington Carvalho (Univ. of Warsaw)

Estimating the ρ scaling non linearity: Loss of coherence

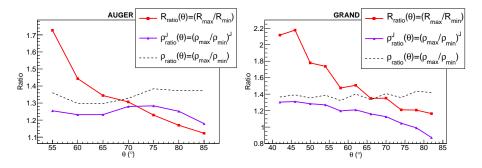
- Fitted $J(\theta)$ from the simulation sets to estimate loss of coherence
- Changed density scaling: $(1/
 ho)
 ightarrow (1/
 ho)^{J(heta)}$
- ullet Loss of coherence decreases the strength of the (1/
 ho) scaling



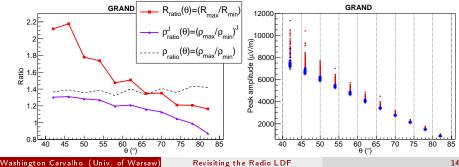
Fitted J from simulations (GRAND)

Washington Carvalho (Univ. of Warsaw)

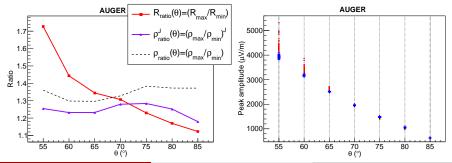
Estimating the ρ scaling non linearity: Loss of coherence


- Fitted $J(\theta)$ from the simulation sets to estimate loss of coherence
- Changed density scaling: $(1/
 ho) o (1/
 ho)^{J(heta)}$
- Loss of coherence decreases the strength of the (1/
 ho) scaling

Washington Carvalho (Univ. of Warsaw)

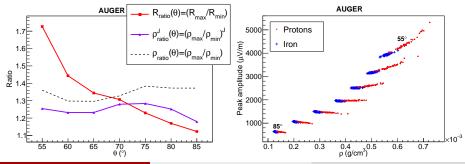

Predictions from the 1/R and $(1/\rho)^{J(\theta)}$ scalings

- Which effect dominates depends on the region in the atmosphere:
 - At low θ (high ρ) R varies more than ρ : R scaling always wins
 - At high zeniths ρ varies more than R: the linear ρ scaling would win
 - But the actual density scaling $(1/\rho)^{J(\theta)}$ will depend on the loss of coherence and thus on the geomagnetic field \vec{B} at the site
- Expected relative strength of the 1/R and $(1/\rho)^{J(\theta)}$ scalings:


Comparison to the full simulation results: GRAND

- Protons tend to have higher X_{max} : lower R, but higher ho than Fe
 - The 1/R scaling tends to increase the field of p showers
 - $\bullet\,$ While the $1/\rho\,$ scaling tends to increase the field of Fe showers
- At GRAND, there is a greater loss of coherence due to the higher \vec{B} :
 - This denies the increase of the $(1/
 ho)^{J(heta)}$ with zenith
 - The 1/R scaling dominates everywhere
 - Protons tend to have higher fields at every zenith, as observed

Comparison to the full simulation results: AUGER


- At Auger, there is a lot less loss of coherence (much lower $|\vec{B}|$):
 - The non-linearity term $J(\theta)$ diminishes less with zenith
- Which scaling dominates will depend on the zenith angle
- Our prediction: the $(1/\rho)^{J(\theta)}$ scaling dominates above $\theta = 72^{\circ}$, so:
 - Protons would tend to have higher fields for $heta \lesssim 72^\circ$
 - ullet But Iron would tend to have the higher fields for $heta\gtrsim72^\circ$
 - This perfectly matches the behavior of our full simulations

Washington Carvalho (Univ. of Warsaw)

Comparison to the full simulation results: AUGER

- At Auger, there is a lot less loss of coherence (much lower $|\vec{B}|$):
 - The non-linearity term $J(\theta)$ diminishes less with zenith
- Which scaling dominates will depend on the zenith angle
- Our prediction: the $(1/\rho)^{J(\theta)}$ scaling dominates above $\theta = 72^{\circ}$, so:
 - Protons would tend to have higher fields for $heta \lesssim 72^\circ$
 - But Iron would tend to have the higher fields for $heta\gtrsim72^\circ$
 - This perfectly matches the behavior of our full simulations

Washington Carvalho (Univ. of Warsaw)

Conclusions

- There is a strong dependence of the radio LDF on X_{max} (composition)
- It is much bigger than any EM energy differences between p and Fe
- Can be understood in terms of two simple competing scalings:
 - A 1/R and a $(1/\rho)^{J(\theta)}$ scaling of the electric field, where $J(\theta)$ quantifies the coherence loss
 - This loss of coherence is due to the larger time delays induced by the larger deflections and heavily depends on \vec{B}
- At GRAND, matching our prediction, proton induced showers tend have higher measured electric fields for all θ due to the high \vec{B}
- The much lower $ec{B}$ at AUGER creates a transition region at $heta\simeq72^\circ$
 - For $\theta \lesssim 72^\circ,$ the $1/{\rm R}$ scaling dominates and proton induced showers tend to have higher fields
 - For $\theta\gtrsim 72^\circ$, the $(1/
 ho)^J$ scaling dominates and now iron induced showers tend have the higher fields

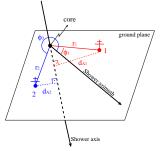
Conclusions

- This historically overlooked dependence of the field amplitude on X_{max} can also be used to create new, more refined event-by-event composition discrimination methods.
- Outlook:
 - This X_{max} dependence also suggests that there could be a composition bias in the current energy reconstruction methods that use radio amplitude data.
 - The estimated EM energy resolution of these methods may be underestimated, as the quoted 5% is smaller than the amplitude differences between p and Fe.
 - These methods should be checked to look for a possible X_{max} /composition bias

Questions?

Other applications of Radio...

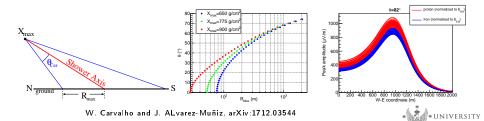
Washington Carvalho (Univ. of Warsaw)


BACKUP

Washington Carvalho (Univ. of Warsaw)

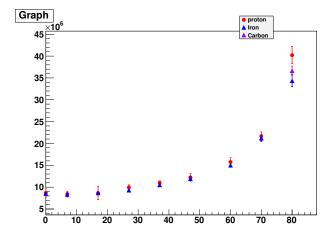
Random Forest Features

- Triggered antennas are ordered with increasing distance to the axis
- For each antenna *i* we used:
 - The distance d_{Ai} to the shower axis and the peak amplitude $|E_i|$
 - Features: d_{A1} , $|E_1|$, d_{A2} , $|E_2|$, ..., d_{Ai} , $|E_i|$
 - The number of features is $2\times$ the number of antennas triggered by the event with the most antennas
 - For events with less antennas, missing features are substituted by zeros
 - Primary composition also saved (p or Fe)

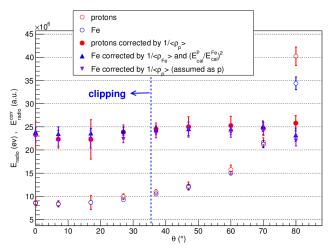

Washington Carvalho (Univ. of Warsaw)

Full ZHAireS simulations

- Antennas on a single line East of the core (no asymmetry!)
- 50 p and 50 Fe showers per zenith angle
- Electric fields normalized by the EM energy of each shower
 - Removes effects due to missing energy differences between p and Fe
 - At 1.25 EeV, on average, $\sim 10\%$ for p and $\sim 15\%$ for Fe
- 2 sites: GRAND and AUGER
- GRAND:
 - Ground at 1264 m, $|B| = 56.4 \mu T$, 50-200 MHz
 - Showers with $E_0 = 1.25$ EeV coming from the North
 - $\bullet~$ Zeniths between 42 and 82° in steps of 4°
- AUGER (older simulation set):
 - Ground at 1400 m, $|B| = 24.0 \mu T$, 30-80 MHz
 - Showers with $E_0 = 5$ EeV coming from the South
 - $\bullet~$ Zeniths between 55 and 85° in steps of 5°


The "Magic angle" (\sim 84°)

- Near the "Magic angle" \sim 84°:
 - The footprint size decrease due to a decreasing θ_{Cher} with altitude cancels out the size increase due to the larger distances (projection)
 - Around this angle the radio footprint shape (illuminated area, ring position) does not depend on X_{max} anymore.
 - Footprint shape is the same regardless of X_{max} , but the amplitude still depends on X_{max} (composition)


Possible composition bias on Energy Reconstruction?

Old plots from 2016....

Possible composition bias on Energy Reconstruction?

Old plots from 2016....

