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Summary

@ Motivation: ML Random Forest primary composition discrimination
method (using simulated events at the GRAND prototype):

e Analysis uncovered a strong electric field amplitude dependence on
Xmax » €ven accounting for the EM energy of the showers.

@ Objective: Explain this effect, in a semi-quantitative way, in terms of
two simple competing scalings of the electric field

Radio emission: E-field dependence on distance and air density

Proposed scalings and loss of coherence

Predictions and comparison to full simulations

Conclusions
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Motivation: ML discrimination

o We developed a Machine Learning (ML) Random Forest algorithm
o Discriminates between heavy (Fe) and light (p) primary compositions
on an event-by-event basis (both at GRAND and a generic array)
o Bypasses any Xj,.x reconstruction and infers composition directly
o Very simple features: just antenna distances and field amplitudes
o Unexpected good accuracies, even with a huge 30% energy smearing
@ Analysis of the feature importances: proton showers seemed to be

brighter than Fe near the core on most geometries

Hexagonal Array Discrimination Accuracy (EM normalized, 6_=10%)
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-
Explaining the parameter importances: Example at § = 62°

@ Most important features:
o Amplitude of the closest antenna followed by the amplitude of the third
closest antenna, and then decreasing for larger distances
@ Observed a strong and well behaved amplitude dependence on Xp,ax :
o Effect is very large
e Even accounting for the different EM energy of the showers
o An X,,.x dependence also equates to a composition dependence
o This effect can fully explain the behavior of the feature importances
and is what the forest uses to obtain such good accuracies

Feature Importances
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Example LDFs: Behavior depends on zenith and site B
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Effect was seen before, but historically disregarded

@ This dependence was seen before, but was never fully pursued

@ Mostly dismissed as just an EM/missing energy effect

o This effect was historically overlooked!
o Introduction of the LOFAR X,,., reconstruction (x? based, “black-box")
e People stopped looking at LDFs for multiple compositions

First comparison between CoREas, ZHAireS and AERA data (ca. 2013):
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Effect was seen before, but historically disregarded

@ This dependence was seen before, but was never fully pursued

@ Mostly dismissed as just an EM/missing energy effect

o This effect was historically overlooked!
o Introduction of the LOFAR X,,., reconstruction (x? based, “black-box")
e People stopped looking at LDFs for multiple compositions

LOFAR Xi,ax reconstruction method (“black-box™)
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|
Why does the amplitude depend on X, ?

@ Vector potential contribution from a single finite particle track:

pe - O(t—tfe)—0(t—tdet) _% _
A(t U) ArRc2 1 1—n,§ﬁ 3 E — (ZHS formalism)

@ Emission consistent with 2 main emission mechanlsms:
o Askaryan or charge excess (R only) and geomagnetic (R and V)

@ The Lorentz force constantly tries to increase V|, but there is a limit
due to the interactions of the charged particles with the air molecules
e Governed by the drift velocity vy o< 1/p, akin to a terminal velocity

° \7J_o<vdo<1/p—>

@ As Xpax increases the shower develops lower in the atmosphere, so:
e The distance R from X, to the array decreases with X, :

o |1/R scaling | — increases field as X,,.x increases

o The air density p at X,,.x increases with X,,., , decreasing vy and V| :

o |1/p scaling | — decreases field as X, increases

e Two competing effects as X, varies!
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R and p variations just due to shower geometry

@ The variation of R = R(6, Xmax ) and p = p(6, Xmax ) with Xax only

depend on the shower geometry and atmospheric model (no sims)
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Amplitude scaling with R: valid for the whole atmosphere

@ Average peak amplitudes as a function of 8, multiplied by R, for each
emission mechanism separately (Ask and Geo)
@ The Askaryan emission is almost constant for all 6:
o Amplitude scales roughly with 1/R over the whole atmosphere
@ Much higher geomagnetic emission at GRAND than at AUGER
o As expected, due to \§|Auger =24.0uT, §|Grand =56.5uT
@ But the geomagnetic emission increases much faster at AUGER. Why?

(Normalized by the Askaryan emission) (Normalized by the Geomagnetic emission)
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Loss of coherence at low air densities

@ At lower densities (higher ) the drift velocity vy o< 1/p increases:
o Deflections due to the Lorentz force also increases

Bigger deflections introduce extra time delays that lower the coherence

of the emission: Jcares, 015, (2023), JCAPOS5, 055, (2024) and PRL132, 231001, (2024)
This loss of coherence also increases with |B| (bigger Lorentz force):
o At GRAND, the higher geomagnetic field increases coherence loss

e So, the geomagnetic emission increases less with § at GRAND

(Normalized by the Askaryan emission) (Normalized by the Geomagnetic emission)
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-
Amplitude scaling with the density p

@ The geomagnetic emission scales only very roughly with 1/p
e As p decreases, the increase in v, and V| leads to higher fields

o But the loss of coherence diminishes the strength of this 1/p scaling

@ Inversely scaled geomagnetic component: GeoR(p/po)/ sin(«)
o While the (1/p) linearity holds, this value should be constant

o Much higher |B| at GRAND increases coherence loss:

e The (1/p) scaling starts to loose linearity much sooner at GRAND.

Inversely scaleo Geo emission
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Estimating the p scaling non linearity: Loss of coherence

o Fitted J(@) from the simulation sets to estimate loss of coherence

o Changed density scaling: (1/p) — (1/p)?®

@ Loss of coherence decreases the strength of the (1/p) scaling
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Estimating the p scaling non linearity: Loss of coherence

o Fitted J(@) from the simulation sets to estimate loss of coherence

o Changed density scaling: (1/p) — (1/p)?®

@ Loss of coherence decreases the strength of the (1/p) scaling

AUGER: R, pand pJ variation at 6=55°
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|
Predictions from the 1/R and (1/p)?®) scalings

@ Which effect dominates depends on the region in the atmosphere:

e At low 6 (high p) R varies more than p: R scaling always wins

o At high zeniths p varies more than R: the linear p scaling would win

o But the actual density scaling (1/p)?() will depend on the loss of
coherence and thus on the geomagnetic field B at the site

o Expected relative strength of the 1/R and (1/p)?(¥) scalings:
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|
Comparison to the full simulation results: GRAND

@ Protons tend to have higher X,,,.x : lower R, but higher p than Fe
o The 1/R scaling tends to increase the field of p showers
o While the 1/p scaling tends to increase the field of Fe showers
@ At GRAND, there is a greater loss of coherence due to the higher B :
o This denies the increase of the (1/p)?(?) with zenith
e The 1/R scaling dominates everywhere
e Protons tend to have higher fields at every zenith, as observed
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|
Comparison to the full simulation results: AUGER

o At Auger, there is a lot less loss of coherence (much lower |B|):
o The non-linearity term J(6) diminishes less with zenith
@ Which scaling dominates will depend on the zenith angle
@ Our prediction: the (1/p)?(?) scaling dominates above § = 72°, so:
e Protons would tend to have higher fields for 6 < 72°
e But Iron would tend to have the higher fields for 6 > 72°
e This perfectly matches the behavior of our full simulations
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|
Comparison to the full simulation results: AUGER

o At Auger, there is a lot less loss of coherence (much lower |B|):
o The non-linearity term J(6) diminishes less with zenith
@ Which scaling dominates will depend on the zenith angle
@ Our prediction: the (1/p)?(?) scaling dominates above § = 72°, so:
e Protons would tend to have higher fields for 6 < 72°
e But Iron would tend to have the higher fields for 6 > 72°
e This perfectly matches the behavior of our full simulations
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Conclusions

There is a strong dependence of the radio LDF on X« (composition)

It is much bigger than any EM energy differences between p and Fe

Can be understood in terms of two simple competing scalings:
o A 1/R and a (1/p)??) scaling of the electric field, where J(6)
quantifies the coherence loss
e This loss of coherence is due to the larger time delays induced by the
larger deflections and heavily depends on B

o At GRAND, matching our prediction, proton induced showers tend
have higher measured electric fields for all # due to the high B

The much lower B at AUGER creates a transition region at 6 ~ 72°
e For § < 72°, the 1/R scaling dominates and proton induced showers
tend to have higher fields
o For § > 72°, the (1/p)’ scaling dominates and now iron induced
showers tend have the higher fields

ashington Carvalho (Univ. of Warsaw) Revisiting the Radio LDF 16 /24



Conclusions

@ This historically overlooked dependence of the field amplitude on
Xmax can also be used to create new, more refined event-by-event
composition discrimination methods.

o Outlook:

o This X,.x dependence also suggests that there could be a composition
bias in the current energy reconstruction methods that use radio
amplitude data.

e The estimated EM energy resolution of these methods may be
underestimated, as the quoted 5% is smaller than the amplitude
differences between p and Fe.

o These methods should be checked to look for a possible
Xmax /composition bias
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Questions?

Other applications of Radio...
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Random Forest Features

o Triggered antennas are ordered with increasing distance to the axis
@ For each antenna i we used:
o The distance da; to the shower axis and the peak amplitude |E;|
o Features: dai, ‘E1|7 dao, |E2|, ., daj, |E,‘
o The number of features is 2x the number of antennas triggered by the
event with the most antennas
o For events with less antennas, missing features are substituted by zeros
e Primary composition also saved (p or Fe)

core

ground plane
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N
Full ZHAireS simulations

Antennas on a single line East of the core (no asymmetry!)

50 p and 50 Fe showers per zenith angle

Electric fields normalized by the EM energy of each shower
o Removes effects due to missing energy differences between p and Fe
e At 1.25 EeV, on average, ~ 10% for p and ~ 15% for Fe

2 sites;: GRAND and AUGER

o GRAND:
o Ground at 1264 m, |B| = 56.4u T, 50-200 MHz
e Showers with E; = 1.25 EeV coming from the North
e Zeniths between 42 and 82° in steps of 4°
AUGER (older simulation set):
o Ground at 1400 m, |B| = 24.0xT, 30-80 MHz
e Showers with E; = 5 EeV coming from the South
e Zeniths between 55 and 85° in steps of 5°
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The “Magic angle” (~ 84°)

@ Near the “Magic angle” ~ 84°:
o The footprint size decrease due to a decreasing 6 cpe, with altitude
cancels out the size increase due to the larger distances (projection)
e Around this angle the radio footprint shape (illuminated area, ring
position) does not depend on X, anymore.
e Footprint shape is the same regardless of X,.x, but the amplitude still
depends on X;,.x (composition)
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Possible composition bias on Energy Reconstruction?

Old plots from 2016....

x10° e
45— A Carbon
pry }
35 i
30
25—

20— $
150 I

F I

C 1
10—

e« 4 1
e T R R DR B
0

ashington Carvalho (Univ. of Warsaw) Revisiting the Radio LDF 23 /24



Possible composition bias on Energy Reconstruction?

Old plots from 2016....
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