Parameters and chemical composition of stars or binary systems components based on analysis of high-resolution spectra

Cezary Gałan

Annual Report 2024, January 23, 2025

Publications and conference presentations

PAPERS:

- "Precise physical parameters of three late-type eclipsing binary giant stars in the Large Magellanic Cloud", Rojas García, G.; Graczyk, D.; Pietrzyński, G.; Gałan, C.; et al., 2025, A&A 692, 110
- "Surface brightness-colour relations of dwarf stars from detached eclipsing binaries II. Extension of calibrating sample", Graczyk, D.; Pietrzyński, G.; Gałan, C.; et al., 2025, A&A, accepted in print

Publications and conference presentations

PAPERS:

- "Precise physical parameters of three late-type eclipsing binary giant stars in the Large Magellanic Cloud", Rojas García, G.; Graczyk, D.; Pietrzyński, G.; Gałan, C.; et al., 2025, A&A 692, 110
- "Surface brightness-colour relations of dwarf stars from detached eclipsing binaries II. Extension of calibrating sample", Graczyk, D.; Pietrzyński, G.; Gałan, C.; et al., 2025, A&A, accepted in print

CONFERENCE PRESENTATIONS:

@ "Galactic and Extragalactic Distances for the Hubble constant. Araucaria Collaboration Meeting 2024", Paris Observatory, France, September 2-6, 2024:

 "Spectral analysis of the candidates for non-pulsating stars in the Cepheid instability strip", Gałan, C.; (oral presentation)

@ "Symbiotic stars, weird novae, and related embarrassing binaries",

Faculty of Mathematics and Physics of Charles University, Prague, Czech Republic, June 3-7, 2024:

- "Chemical abundances and kinematics of symbiotic giants in S-type systems", Gałan, C.; (oral presentation)
- "HRS monitoring of symbiotic stars with yellow giants and active systems during outbursts", Gałan, C.; Mikołajewska, J.; Monard, B.; Pietrzyński, G.; Wielgórski, P.; Kicia, M.; (poster)
- "Chemical abundances of the stripped giant in the X-ray binary GX 339-4", Gałan, C.; Mikołajewska, J.; Zdziarski, A.; (poster)

Spectral analysis of the candidates for non-pulsating stars in the Cepheid instability strip

Candidates among LMC Cepheids.

Parameters: *T*_{eff}, [Fe/H], and log *g* derived from the Strömgren photometry.

MIKE spectrograph

6.5 m Clay telescope

Las Campanas Observatory

Slit 0.7", R _{blue} ~ 41000, R _{red} ~ 32000.

NameNo. of obs.DatesRadial Vel. [km/s]S/NCan-011 $2019-12-23$ 267.92 ± 0.30 45Can-032 $2019-12-23$ 271.47 ± 0.38 70 $2020-02-24$ 271.36 ± 0.43 70Can-071 $2019-12-24$ 241.66 ± 0.26 40Can-081 $2019-12-23$ 252.96 ± 1.26 43Can-091 $2019-12-23$ 285.74 ± 0.97 95 $2020-02-24$ 285.28 ± 0.99 $2021-12-08$ 284.81 ± 1.09 Can-103 $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-23$ 259.37 ± 0.38 65 $2020-02-24$ 259.70 ± 0.40 $2020-02-24$ 259.70 ± 0.40 Can-161 $2019-12-23$ 263.62 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name	No. of obs.	Dates	Radial Vel. [km/s]	S/N
Can-032 $2019-12-23$ $2020-02-24$ 271.36 ± 0.43 70Can-071 $2019-12-24$ 241.66 ± 0.26 40Can-081 $2019-12-23$ 252.96 ± 1.26 43Can-091 $2019-12-24$ 268.21 ± 0.34 45Can-103 $2019-12-23$ 285.74 ± 0.97 $2020-02-24$ 95 $2021-12-08$ Can-111 $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-23$ 259.37 ± 0.38 65 $2020-02-24$ Can-142 $2019-12-23$ 259.37 ± 0.38 65 $2020-02-24$ Can-161 $2019-12-24$ 278.71 ± 0.78 40Can-173 $2019-12-23$ $2020-02-24$ 263.62 ± 0.60 $2021-12-10$ 90 $2021-12-10$	Can-01	1	2019-12-23	267.92 ± 0.30	45
Can-071 $2019-12-24$ 241.66 ± 0.26 40Can-081 $2019-12-23$ 252.96 ± 1.26 43Can-091 $2019-12-24$ 268.21 ± 0.34 45Can-103 $2019-12-23$ 285.74 ± 0.97 95 $2020-02-24$ 285.28 ± 0.99 95 $2021-12-08$ 284.81 ± 1.09 48Can-111 $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-23$ 259.37 ± 0.38 65Can-142 $2019-12-23$ 259.70 ± 0.40 65Can-161 $2019-12-24$ 278.71 ± 0.78 40Can-173 $2019-12-23$ 263.62 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48	Can-03	2	2019-12-23 2020-02-24	271.47 ± 0.38 271.36 ± 0.43	70
Can-081 $2019-12-23$ 252.96 ± 1.26 43Can-091 $2019-12-24$ 268.21 ± 0.34 45Can-103 $2019-12-23$ 285.74 ± 0.97 95 $2020-02-24$ 285.28 ± 0.99 $2021-12-08$ 284.81 ± 1.09 Can-111 $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-23$ 259.37 ± 0.38 65Can-142 $2019-12-23$ 259.70 ± 0.40 65Can-161 $2019-12-24$ 278.71 ± 0.78 40Can-173 $2019-12-23$ 263.62 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48	Can-07	1	2019-12-24	241.66 ± 0.26	40
Can-091 $2019-12-24$ 268.21 ± 0.34 45Can-103 $2019-12-23$ 285.74 ± 0.97 95 $2020-02-24$ 285.28 ± 0.99 $2021-12-08$ 284.81 ± 1.09 Can-111 $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-23$ 244.03 ± 0.34 43Can-142 $2019-12-23$ 259.37 ± 0.38 65 $2020-02-24$ 259.70 ± 0.40 65Can-161 $2019-12-23$ 263.62 ± 0.60 90Can-173 $2019-12-23$ 263.33 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48	Can-08	1	2019-12-23	252.96 ± 1.26	43
Can-103 $2019-12-23$ $2020-02-24$ $2020-02-24$ $2021-12-08$ 285.74 ± 0.97 285.28 ± 0.99 $2021-12-08$ 95Can-111 $2019-12-23$ $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-23$ 	Can-09	1	2019-12-24	268.21 ± 0.34	45
Can-111 $2019-12-23$ 244.08 ± 0.29 48Can-131 $2019-12-24$ 265.43 ± 0.34 43Can-142 $2019-12-23$ 259.37 ± 0.38 65 $2020-02-24$ 259.70 ± 0.40 65Can-161 $2019-12-24$ 278.71 ± 0.78 40Can-173 $2019-12-23$ 263.62 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48	Can-10	3	2019-12-23 2020-02-24 2021-12-08	285.74 ± 0.97 285.28 ± 0.99 284.81 ± 1.09	95
Can-131 $2019-12-24$ 265.43 ± 0.34 43Can-142 $2019-12-23$ 259.37 ± 0.38 65 $2020-02-24$ 259.70 ± 0.40 25Can-161 $2019-12-24$ 278.71 ± 0.78 40Can-173 $2019-12-23$ 263.62 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48	Can-11	1	2019-12-23	244.08 ± 0.29	48
Can-142 $2019-12-23$ $2020-02-24$ 259.37 ± 0.38 259.70 ± 0.40 65Can-161 $2019-12-24$ $2019-12-23$ 278.71 ± 0.78 40Can-173 $2019-12-23$ $2020-02-24$ $2020-02-24$ 263.62 ± 0.60 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 90	Can-13	1	2019-12-24	265.43 ± 0.34	43
Can-161 $2019-12-24$ 278.71 ± 0.78 40Can-173 $2019-12-23$ 263.62 ± 0.60 90 $2020-02-24$ 263.33 ± 0.60 $2021-12-10$ 263.12 ± 0.48	Can-14	2	2019-12-23 2020-02-24	259.37 ± 0.38 259.70 ± 0.40	65
Can-17 3 2019-12-23 263.62 ± 0.60 90 2020-02-24 263.33 ± 0.60 2021-12-10 263.12 ± 0.48 90	Can-16	1	2019-12-24	278.71 ± 0.78	40
	Can-17	3	2019-12-23 2020-02-24 2021-12-10	263.62 ± 0.60 263.33 ± 0.60 263.12 ± 0.48	90

These stars appear to be photometrically stable at the level of a few mmag!

Methods

Spectrum synthesis

GSSP code (Tkachenko 2015) SynthV radiative transfer code (Tsymbal 1996)

<u>MEASURED</u>: *T*_{eff}, [M/H], ξ, *V*_{rot}, abundances

MODEL ATMOSPHERES:

LL_{MODELS} (Shulyak et al., 2004) *MARCS* (Gustafsson et al., 2008)

Parameter, step width						
[M/H]	Δ [M/H]	$T_{ m eff}$	$\Delta T_{\rm eff}$	$\log g$	$\Delta \log g$	
(dex)		(K)		(dex)		
[-1.0, 1.0]	0.1	$\frac{MARCS}{[2500,5500]}$	100	[1.0, 5.0]	0.1	
		[5 600, 10 000]	100	[2.5, 5.0]		
[-0.8, 0.8]	0.1	[10000, 25750] [25750, 30000]	250	[3.0, 5.0] [3.3, 5.0]	0.1	
		[30000,33000] [33000,34000]	500	[3.5, 5.0] [4.0, 5.0]		

PROBLEM:

the lack of models for log g < 2.5 dex (adopted log g = 2.5 for all objects).

Equivalent width method

MOOG v2019 code (Sneden 1973) ARES v2 code (Sousa et al., 2015)

log g, T_{eff} , [M/H], ξ , V_{fot} , abundances

Kurucz (ATLAS code; Kurucz 1993)

ADVANTAGES:

- can be faster (focused on a specific lines),
- ARES enables authomatic measuremet of EW,
- Fully authomatic continuum determination.

WEAKNESSES:

- Blending of lines makes a problem (this may lead to inaccurate results),
- Caution in lower resolution data (R < 20000),
- Avoid fast rotators (V sini >~15 Km/s).

Analysis.

Example of solution for CAN-10 using single version of GSSP code

Analysis.

Example of solution for CAN-11 using ARES + MOOG

Iterative proces:

After each step, outlier points were rejected using the $\pm 3\sigma$ criterion.

<u>The final parameters:</u>
T _{eff} = 6410 ± 375 K
<mark>log <i>g</i> = 1.55 ± 0.62 dex</mark>
[Fe/H] = -0.14 ± 0.17 dex
<mark>ξ</mark> = 3.33 ± 0.40 km/s

Abundances of chemical elements in CAN-11

Relative to solar the values of abundances obtained with GSSP (circles) and MOOG (diamonds).

Significantly enhanced heavy (Barium – peak) s-process elements: Ba, La, Ce, Pr, Nd, Sm; and frequently also light (Zirconium – peak) s-process elements: Zr, Y.

Results from different methods:

Spectrum synthesis (GSSP), EW (MOOG), and Strömgren photometry

- *T*_{eff} will probably not differ significantly from those obtained from Strömgren photometry suspected physical reason for the observed behavior!
- The next step: the spectral synthesis repeated using *Kurucz* model atmospheres with free log g.

HRS monitoring of symbiotic stars with yellow giants, and active systems around outbursts

Gałan C., Mikołajewska J., Monard B., Pietrzyński G., Wielgórski P., Kicia M.

Id No ^(a)	Name	\mathbf{JD}_{1st}	JD _{last-1st}	$N_{obs.}$	Porb. [d]	(JDlast-1st)/Porb.
-	StHa 63	2458446	1977	16	-	-
25	WRAY 15-157	2458446	1978	17	-	-
28	AS 201	2458439	1985	19	-	-
32	SS73 29	2458473	1957	19	-	-
40	Hen 3-863	2458487	1937	31	526 ^(b)	3.68
41	St 2-22	2458530	1891	27	918	2.06
43	V840 Cen	2458494	1935	23	8.096 ^(b)	239
50	V417 Cen	2458497	1917	27	1652	1.16
51	BD-21 3873	2458505	1560	27	281.6	5.54
55	HD 330036	2458517	1906	27	1678	1.14
65	Hen 3-1213	2458559	1864	35	533 ^(b)	3.50
112	AS 255	2459009	1412	11	-	-
116	AS 269	2458664	1772	12	-	-
-	PN G001.7-03.6	2458617	1408	5	-	-
122	Hen 3-1591	2458602	1821	13	2350	0.77
s22	V618 Sgr	2458544	1844	23	703	2.62
126	PN Ap 1-9	2458574	1858	10	-	-
s25	Hen 2-379	2458559	1878	15	-	-
-	SS383	2458576	1847	20	385 ^(b)	4.80
153	MWC 960	2458577	1862	19	-	-
-	StHa 176	2458581	1840	25	241 ^(b)	7.63
182	CD-43 14304	2458442	1978	25	1448	1.37
184	StHa 190	2458617	1820	18	-	-

AIMS:

- Abundances, evolutionary status, mass transfer
- Radial velocity monitoring → spectroscopic orbits
- Monitoring of SySt in active states

OBSERVATIONS:

• HRS/SALT (R~40000, 3900 - 8800 Å)

Programs: 2019-1-MLT-008 & 2018-2-SCI-021.

- V, R_c, I_c photometry (35 cm Meade RCX400)
 Berto Monard, Kleinkaroo Observatory, Sout Africa
- *V*, *I*_c photometry (80 cm 'Zibi' Telescope)

Cerro Murphy Observatory, Chile

V840 Cen

P_{orb} ~ 8.096 days

Radial velocity curves of both components,

Lithium (6707.8 Å) line

V618 Sgr

eclipsing symbiotic Nova

Radial velocities rom 23 HRS/SALT spectra (around three eclipses).

Preliminary solution for the circular orbit:

 $T_0 = (2458405.5 \pm 3.9) + (708.9 \pm 0.23) \cdot E,$ $K = 7.7 \pm 0.4 \text{ km/s}$

Ephemeris is in good agreement with 3 minima observed in 1930's (Swope 1940)

M_{wD} ~0.5−0.6 M⊙

Spectral synthesis and results

The spectrum synthesis method: *Turbospectrum.v19* code (Plez 2012).

Grid of 72 models: *T*_{eff} = 4250–5000 K, log*g* = +2.5–+3.5 dex, [M/H] = -0.5 – +0.75 dex.

The best fit parameters: T_{eff} = 4500 K, log g = 3.5 dex, [M/H] = -0.25 dex.

Exceptionally high abundance of potassium (K I): [X] ~ +1.9 dex !

