Toward a Comprehensive Grid of Cepheid Models with MESA

Oliwia Ziółkowska

Radek Smolec, Rajeev Singh Rathour, Vincent Hocdé

CAMK Annual Meeting 22/01/2025

- Non-evolutionary effects on Period change in Magellanic Cepheids I: New binary systems revealed from Light Travel Time Effect [A&A] R. S. Rathour, G. Hajdu, R. Smolec, P. Karczmarek, V. Hocdé, O. Zlółkowska, I. Soszyński, A. Udalski
- Non-evolutionary effects on Period change in Magellanic Cepheids II: Empirical constraints on non-linear period changes [A&A] R. S. Rathour, R. Smolec, G. Hajdu, O. Ziółkowska, V. Hocdé, I. Soszyński, A. Udalski, P. Karczmarek

Irregular period change candidates

The irregular mess

Key Results

- Candidates: ~1585 Cepheids;LMC: 695; SMC: 890 Take away: Non-linear period changes are significant fraction (~33%)
- Pulsation mode dependence on non-linear period changes: 10 mode more susceptible than F mode in Cepheids across the Magellanic Cloud.
- Amplitude of the random period fluctuations grows with pulsation period: At a given pulsation period, larger in 10 mode Cepheids.

Classical Cepheids

Main goal: Construct a huge grid of self-consistent evolutionary and pulsation models for classical Cepheids.

- There are a lot of secondary components to the evolutionary models with different prescriptions.
- The choice of particular option depends on author's preference - no generally recognized physically motivated choices.
- The goal of our first paper was to estimate uncertainties rising from this freedom.

MESA

- * (M/Z) = 2-15 M_{\odot} / 0.0014, 0.004, 0.014
- \star overshooting and canonical models

Reference tracks and 22 varied tracks.

Next to the reference model (blue), we construct 22 modified models (grey) with modified atmospheres, MLT, nuclear reactions, etc.

The spread at evolutionary benchmark points gives us systematic uncertainties; They can be averaged over M, Z.

- ★ Systematic MESA uncertainties are significant for He-burning stars;
- ★ Slightly higher for higher (solar) Z;
- * Higher-mass stars (>9 M_{\odot}) are tricky to model
- * Convection, metal mixture, nuclear reactions affect the Blue Loop most.

Part II: Abundances

The same grid, similar procedure; Significant difference - 0.01 dex.

 $M/Z/SET = 5/0.014/RES_A$

The depth of the convection zone affects surface abundances.

Abundances

Isotopes of steep profiles are affected more, e.g. ¹²C and ¹⁹F

Scientific activities & outreach

- * 8th TESS/15th Kepler Asteroseismic Science Consortium Workshop, Porto
- * Porto Summer School on Asteroseismology, From Pixels to Stellar Ages
- * RR Lyrae and Cepheid meeting 2024, Marrakesh

Extra slides

CNO cycle, credit to Frank Timmes

Hot CNO: 0.2 < T₉ < 0.5 rp process: T₉ > 0.5

CAMK Annual Meeting

CNO: To < 0.2

The problem with more massive models

For $M \geqslant 9 M_{\odot}$ the tracks are qualitatively different.

- * No convergence (increasing numerical resolution changes shape of the track);
- * Erratic post-MS evolution;
- * Reason thin, short-lived convective shells after MS that affect further evolution.

Thin convective shells in a massive model on a Kippenhahn diagram

