CAMK yearly meeting 22.01.2025

Piotr Kalaczyński

Work supported by:

KM3NeT detectors: brief summary

*RCA : Research with Cosmics in the Abyss

Nicolaus Copernicus Astronomical Center Polish Academy of Sciences

ASTROCENT Particle Astrophysics Science

and Technology Centre International Research Agenda

♦ me ☺♦ Mariusz Suchenek

AGH University of Krakow

NFIIS Control AGH

- ✤ Artur Ukleja
- Tomasz Szumlak
- Agnieszka Obłąkowska-Mucha
- Kalyani Mehta (PhD student)
- Amine Meskar (PhD student)
- Wiktoria Szewczyk (MSc student)

CEAI Center of Excellence in Artificial Intelligence

✤ me ☺

AGH

WFilS:

Under evaluation: Next planned: OPUS (NCN) MNiSW grant

A little spoiler ...

nature

Explore content < About the journal <

al 👻 Publish with us 🛩

Subscribe

<u>nature</u> > <u>news</u> > article

NEWS 21 June 2024

'Fantastic' particle could be most energetic neutrino ever detected

The ultra-high-energy neutrino was spotted by deep-sea detectors and could point to a massive cosmic event.

By Davide Castelvecchi

Ƴ **f** ⊠

An observatory still under construction at the bottom of the Mediterranean Sea has spotted what could be the most energetic neutrino ever detected. Such ultra-high-energy neutrinos – tiny subatomic particles that travel at nearly the speed of light – have been known to exist for only a decade or so, and are thought to be messengers from some of the Universe's most

stay tuned ...

Our focus:

- Software development & maintenance:
 - new acoustic simulation code: SUNSET [Julia]
 - Acoustic calibration
 - Sound emission by UHE neutrino events

Our focus:

- Software development & maintenance:
 - new acoustic simulation code: SUNSET [Julia]
 - Acoustic calibration
 - Sound emission by UHE neutrino events
 - gSeaGen

[C++]

- GENIE-based neutrino events generator
- Processing of muons simulated with CORSIKA
 → <u>Paper</u> in CPC under review

Our focus:

- Software development & maintenance:
 - new acoustic simulation code: SUNSET [Julia]
 - Acoustic calibration
 - Sound emission by UHE neutrino events
 - gSeaGen
 - [C++]
 - GENIE-based neutrino events generator
 - Processing of muons simulated with CORSIKA
 - \rightarrow <u>Paper</u> in CPC under review
- Neutrino energy & direction reconstruction
 - Using optical and/or acoustic data
 - Using ML & DL

Our focus:

- Software development & maintenance:
 - new acoustic simulation code: SUNSET [Julia]
 - Acoustic calibration
 - Sound emission by UHE neutrino events
 - <u>gSeaGen</u>

[C++]

- GENIE-based neutrino events generator
- Processing of muons simulated with CORSIKA
 - \rightarrow <u>Paper</u> in CPC under review
- Neutrino energy & direction reconstruction
 - Using optical and/or acoustic data
 - Using ML & DL
- Study of TDEs with neutrinos

Our focus:

- Software development & maintenance:
 - new acoustic simulation code: SUNSET [Julia]
 - Acoustic calibration
 - Sound emission by UHE neutrino events
 - <u>gSeaGen</u>

[C++]

- GENIE-based neutrino events generator
- Processing of muons simulated with CORSIKA
 - \rightarrow <u>Paper</u> in CPC under review
- Neutrino energy & direction reconstruction
 - Using optical and/or acoustic data
 - Using ML & DL
- Study of TDEs with neutrinos
- Muon bundle reconstruction
- Prompt muon sensitivity study

Summary

- KM3NeT grows & already collects valuable data *
- Reliable simulations necessary *
- hank you for your attention. Big potential for neutrino astronomy (and beyond) *
- Stay tuned for more exciting results! © *

Nature Paper – 12. Feb!

Foundation for Polish Science

European Union European Regional **Development Fund**

Detector design summary

DOM production:(@Nikhef)

Preparation for deployment:

String deployment:

More at: youtube.com/KM3NeTneutrino

Water Cherenkov v telescopes

Comments:

- prompt flux normalisation has a linear effect on sensitivity
- still, systematics are the dominant issue

We have 2 options:

- 1. <u>MUPAGE</u> (atmospheric **MU**ons from **PA**rametric formulas: a fast **GE**nerator for neutrino telescopes)
 - developed for ANTARES
 - fast muon MC generator
 - based on parametric formulas and MACRO measurements
 - parameters can be freely tuned

2. CORSIKA (COsmic Ray SImulations for KAscade)

- developed for KASCADE
- full simulation of air showers
- customizable (models, primaries, etc.)

Light sensors

Digital Optical Module (DOM)

acrylic glass sphere with:

- 31 3" PMTs,
- readout electronics, ٠
- pressure gauge, ٠
- acoustic sensonrs,
- . . .

2022 JINST 17 P0703

Photomultiplier Tube (PMT)

converts light into electric signal

JINST13 (2018) P05035

DOM arrangement

Detection Unit (DU): vertical string with 18 DOMs

Eur. Phys. J. C 76 (2016) 76:54

Naming:

ORCA6 \leftrightarrow ORCA with 6 strings ARCA2 \leftrightarrow ARCA with 2 strings etc.

DOM arrangement

Detection Unit (DU): vertical string with 18 DOMs

Eur. Phys. J. C 76 (2016) 76:54

Naming:

ORCA6 \leftrightarrow ORCA with 6 strings ARCA2 \leftrightarrow ARCA with 2 strings etc.

ML reco: features used for reconstruction

KM3NeT/ARCA115 Preliminary 3DSHOWER trig hit amplitude sum -10 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0. 3DSHOWER trig hit amplitude avg - 0.3 00.01 03 03 03 03 03 03 01 02 03 03 03 02 02 02 02 3DSHOWER trig hit amplitude_std -02 00 00 01 00 00 01 04 01 01 00 00 01 00 00 01 04 04 04 04 04 03 04 02 03 03 3DMUON_trig_hit_amplitude_sum - 1.0 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.1 0.0 0.0 -0.1 -0.0 0.0 -0.1 04 0.0 01 -0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.5 -0.1 0.1 0.0 0.0 -0.1 -0.0 0.0 -0.1 0 3DMUON trig hit amplitude avg - 0 3DMUON trig hit amplitude std -3DMUON_3DSHOWER_trig_hit_amplitude_sum - 1.0 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0 3DMUON 3DSHOWER trig hit amplitude avg -3DMUON_trig_hits_duration - 05 03 04 05 04 04 05 04 05 -01 -0.0 -0.0 -0.0 -0.1 -0.0 00 -0.2 05 0.0 0.2 -0.0 0.0 -0.2 10 -0.1 -0.0 -0.0 -0.0 -0.1 -0.0 0.0 -0.2 0.6 05 05 05 05 05 05 05 05 07 05 08 05 07 05 04 0.4 0.4 0.4 0.4 distance_first_3DMUON_3DSHOWER_trig_hit_to_det_edge - 0.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.0 - 0.9 0.8 0.6 0.3 0.3 0.3 0.3 3DSHOWER trig hits - 1.0 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.5 0.0 0.2 -0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.5 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.5 1.0 1.0 1.0 1.0 0.0 3DMUON trig hits 9 0.3 0.3 0.3 1.0 0.6 0.6 0 0.2 0.2 0.1 0.2 horizontal span 3DSHOWER trig hits - 0.5 0.3 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.5 -0.1 -0.1 0.0 -0.0 -0.1 0.0 -0.0 -0.2 0.8 0.0 0.2 0.0 -0.0 -0.2 0.0 -0.0 -0.1 0.7 -0.1 -0.1 0.0 -0.0 -0.1 0.0 -0.0 -0.2 0.2 0.2 0.2 0.6 0.3 1.0 0.3 6 0.3 0.4 0.1 0.1 0.1 0.1 0.3 0.3 0.3 1.0 0.6 0.2 0.2 0.1 0.2 overlays - 0.1 0.3 0.2 0.1 0.3 0.3 0.1 0.3 0.3 -0.1 -0.3 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 -0.1 0.7 -0.0 0.1 -0.0 0.0 -0.1 0.0 0.0 -0.1 0.5 -0.2 -0.3 0.0 0.0 0.1 0.0 0.0 -0.1 0.6 0.1 0.1 0.1 0.1 0.4 1.0 0.0 0.0 0.1 0.0 true multiplicity - 0.7 0.2 0.3 0 7 0.2 0.3 0.7 0.2 0.3 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.3 0.0 0.1 -0.0 -0.0 -0.1 -0.0 0.0 -0.0 0.4 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.3 true multiplicity selected mutotal_true_primary_energy -0.6 0.2 0.3 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.3 0.0 0.1 -0.0 0.0 -0.1 -0.0 0.0 -0.0 0.4 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 true_energy -

In total: 46 features (+4 targets)

1.00

-0.75

-0.50

-0.25

-0.00

coefficient

0.00 Pearson correlation c

--0.50

-0.75

-1.00

Example for ARCA115

(the same was done for ARCA6, ORCA115 and ORCA6)

ML reco: feature clustering

KM3NeT/ARCA115 Preliminary

Cluster distance cutoff is arbitrary

Clusters are marked by different colors

Example for ARCA115 (the same was done for ARCA6, ORCA115 and ORCA6)

Bundle energy reco: best ML model selection

Performance comparison on a fraction (50k events) of the training dataset:

Bundle energy reco: best ML model selection

Speed comparison on a fraction (50k events) of the training dataset:

LightGBM:

- ✤ not the fastest, but still very decent
- + it turned out to scale up very well (entire dataset is orders of

magnitude larger)

These times were obtained running with 20 CPU cores in parallel

Bundle energy reco: learning inspection

Here we see why 50k events were fine for testing (but e.g. 5k would not be) Here I just compare LightGBM (no tuning whatsoever) and JMuon reco (non-ML reco)

JMuon

25

LightGBM

Comparison in 1D:

Bundle energy reco: feature importance

KM3NeT/ARCA115 Preliminary overlavs horizontal_span_3DMUON_3DSHOWER_trig_hits vertical_span_3DMUON_3DSHOWER_trig_hits horizontal span 3DMUON trig hits vertical span 3DMUON trig hits horizontal span 3DSHOWER trig hits vertical span_3DSHOWER_trig_hits 3DMUON 3DSHOWER trig hits 3DMUON trig hits 3DSHOWER trig hits 3DMUON_3DSHOWER_trig_hits_duration -last_3DMUON_3DSHOWER_trig_hit_pmt_dir_z last_3DMUON_3DSHOWER_trig_hit_pmt_dir_y last_3DMUON_3DSHOWER_trig_hit_pmt_dir_x first_3DMUON_3DSHOWER_trig_hit_pmt_dir_z first_3DMUON_3DSHOWER_trig_hit_pmt_dir_y first_3DMUON_3DSHOWER_trig_hit_pmt_dir_y first_3DMUON_3DSHOWER_trig_hit_pmt_dir_x distance_first_3DMUON_3DSHOWER_trig_hit_to_det_edge distance last 3DMUON 3DSHOWER trig hit to det edge 3DMUON trig hits_duration last_3DMUON_trig_hit_pmt_dir_z -last_3DMUON_trig_hit_pmt_dir_y last_3DMUON_trig_hit_pmt_dir_x -first_3DMUON_trig_hit_pmt_dir_z first_3DMUON_trig_hit_pmt_dir_y first 3DMUON trig hit pmt dir x distance_first_3DMUON_trig_hit_to_det_edge distance_last_3DMUON_trig_hit_to_det_edge 3DSHOWER_trig_hits_duration last_3DSHOWER_trig_hit_pmt_dir_z last_3DSHOWER_trig_hit_pmt_dir_y last_3DSHOWER_trig_hit_pmt_dir_y last_3DSHOWER_trig_hit_pmt_dir_x + first_3DSHOWER_trig_hit_pmt_dir_y + first_3DSHOWER_trig_hit_pmt_dir_y + first_3DSHOWER_trig_hit_pmt_dir_x + distance_first_3DSHOWER_trig_hit_to_det_edge distance_last_3DSHOWER_trig_hit_to_det_edge 3DMUON_3DSHOWER_trig_hit_amplitude_std 3DMUON_3DSHOWER_trig_hit_amplitude_avg 3DMUON_3DSHOWER_trig_hit_amplitude_sum 3DMUON_trig_hit_amplitude_std 3DMUON Trig hit amplitude avg 3DMUON trig hit amplitude sum 3DSHOWER trig hit amplitude std 3DSHOWER trig hit amplitude avg 3DSHOWER Trig hit amplitude sum 10-5 10-3 10-1 101 Feature importance (mean R^2 decrease)

Colors here are not random!

They match the feature clustering

The idea: Try to select only the most important feature in each cluster

Bundle energy reco: feature selection

I considered 4 options:

- 1. All features
- 2. Features with importance>0 & only the most important 4. Features with importance>0

one from each cluster

- 3. The most important feature only

Bundle energy reco: feature selection

I considered 4 options:

- 1. All features
- 2. Features with importance>0 & only the most important 4. Features with importance>0

one from each cluster

- 3. The most important feature only

ML reco: general overview

Hyperparameter Importances

Multiplicity reco: muon selection

We want to exclude muons, which:

- Are too far from the detector
- Have too short pathlength inside the volume of interest
- Emit too faint light (have too low Energy)
- Basically are not visible or would be poorly reconstructed

How?

- Check the JMuon* likelihood L for single muon events against:
 - distance of muon from the DET center (\bigcirc) for vertical muons \rightarrow pick an optimal volume by shrinking the can by x as:

 $r_{\rm can} - x$, $h_{\rm can} - x$

- muon pathlength *L* but for shrinked can
- muon energy $\rightarrow E$ cut

JMuon – standard muon track reco

Summary of the selction:

Detector	Minimal E_{μ} [GeV]	<i>d</i> _{max} [m]	minimal L_{μ} [m]
ARCA115	120	-	-
ARCA6	120	269.4	240
ORCA115	1	-	-
ORCA6	1	-	-

(plots in the backup)

This selection is used for further multiplicity results

Example of ARCA6, for which the effect is the most pronounced

Example of the results for ARCA6:

Analogical results obtained for ARCA115, ORCA115 and ORCA6

Definition of signal and background

Prompt and conv parent particles

Note: 1 parent conventional \rightarrow the muon is conventional.

The colours here only tell you if particles have short or long livetimes (if applicable).

Most muons originate from π^{\pm} and K^{\pm} , as expected.

The most important prompt mother particles for muons are light vector mesons (η , ρ , ω), not *D* mesons (also expected).

If mother is a muon or grandmother is the same nucleus as the primary, it means that there were just less interactions between shower start and muon creation.

NB: particles & antiparticles are counted together! (and so are all nuclei, including hydrogen)

I look at 3 things:

- 1. Muon arrival time
- 2. Muon energy share
- 3. Muon production point

Muon arrival time

arrival time: time between the first interaction of the primary and the muon crossing the can boundary

Conclusion here is that prompt is <u>not</u> <u>really evident from arrival times</u> on event-by-event basis (which is a bummer, because this could have been measurable)

Muon energy share

I use ORCA115 to boost the statistics

Prompt muons indeed tend to carry a larger portion of the total primary energy

The wiggles are coming from the contributions of different primaries

Muon production point

I use ORCA115 to boost the statistics

Prompt muons indeed are more often produced close to the 1st interaction

Definition of signal and background

The observable distributions

Neutrino sources

L. Mohrmann, Characterizing cosmic neutrino sources – a measurement of the energy spectrum and flavor composition of the cosmic neutrino flux observed with the IceCube Neutrino Observatory, Humboldt U., Berlin (2015)

Event topologies

Water

- High-energy neutrino emission is correlated with temporal and spatial emissions across all the multimessenger
- Tidally disrupted events are one of the potential candidates of high energy neutrinos

High-energy neutrinos

Tidally disrupted events

- Tidally disrupted events (TDE): Theoretical concept of massive black holes and star system reaching Roche limit
- Main sequence stars of mass 1 10 M_{\odot} and black hole mass 10^6 $10^{12} M_{\odot}$
- TDE comprises of jet and fallback accretion system

- Multi-messenger properties:
 - Spectral classification by UV optical color diagram into TDE-H, TDE-H+He, and TDE-He
 - At X-ray and radio energies non-thermal emissions
 - Very high-energy neutrinos of TeV and PeV
 - Gravitational waves candidate up to 10 Hz

