Zjazd CAMK Sprawozdanie za 2024 rok

Leszek Zdunik

CAMK
22 stycznia 2025

Papers 2024

Journal of High Energy Astrophysics 42 (2024) 52–62

Evidence for 3XMM J185246.6+003317 as a massive magnetar with a low magnetic field

Rafael C.R. de Lima ^{a,*}, Jonas P. Pereira ^{b,c}, Jaziel G. Coelho ^{c,d}, Rafael C. Nunes ^{d,e}, Paulo E. Stecchini ^{d,f}, Manuel Castro ^g, Pierre Gomes ^a, Rodrigo R. da Silva ^d, Claudia V. Rodrigues ^d, José C.N. de Araujo ^d, Michał Bejger ^{b,h}, Paweł Haensel ^b, J. Leszek Zdunik ^b

A&A, 690, A301 (2024) https://doi.org/10.1051/0004-6361/202348340 © The Authors 2024

Layers of electron captures in the crust of accreting neutron stars

L. Suleiman^{1,2,3,*}, J. L. Zdunik², and P. Haensel²

Nicholas and Lee Begovich Center for Gravitational Wave Physics and Astronomy, California State University Fullerton, Fullerton, California 92831, USA

² Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland

³ Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, Université Paris Cité, CNRS, F-92190 Meudon, France

Accretion vs. reactions

Classical approach	Reaction rate vs accretion
Infinite reaction rate	Reaction rate depends on experimental data, pressure and abundance of nuclei
Local equilibrium (t,P)	Matter not in equilibrium - reactions take place
Single nucleus approximation	In the reaction layer mixture of parent and grand-daughter nuclei (A,Z), (A,Z-2)
Reaction layer - infinitesimally thin	Time evolution of reaction layer (finite size)

Reaction Layer

$$(A, Z) + e^{-} \rightarrow (A, Z - 1) + \nu \text{ slow },$$

 $(A, Z - 1) + e^{-} \rightarrow (A, Z - 2) + \nu \text{ fast}$

Mixture of two nuclides (isobars)

Parent nuclei N_0 (A, Z). Grand-daughter nuclei N_2 (A, Z-2)

$$X = \frac{N_0}{N_0 + N_2}$$

 P_{th} threshold pressure - $\mu(P_{th},A,Z)=\mu(P_{th},A,Z-1)$ - corresponds to infinite reaction rate $\delta P=P-P_{th}>0$

The accretion timescale:

$$\tau_{acc}(\delta P) = \frac{4\pi R^4 \delta P}{GM\dot{M}}$$

- increasing function of δP

The reaction timescale:

$$\tau_{react} = \tau_{react}(\delta P, X; (N, Z))$$

- decreasing function of δP

$$\partial_{\tau}(nX) + \partial_{z}(vnX) = -nX\mathscr{R}_{ec}.$$

Evolution of the reaction layer

Conclusions

- The heat sources are time- and pressure- dependent
- The total heat release is a function of astrophysical (active and quiescent time) and microscopic (reaction rate) parameters.
- These parameters should be considered separately and individually for each reaction layer.
- Thickness of the reaction layers: $\delta P = 10^{-7} \text{ MeV/fm}^3 10 \text{ cm} 10 \text{ m}$
- Shell thickness (between reaction layers) $\Delta P \sim 10^{-5} 10^{-4} \; \mathrm{MeV/fm^3}$
- Energy release larger than in the case of instantaneous reaction (by $\sim 20\,\%$)