Zjazd CAMK Sprawozdanie za 2024 rok Leszek Zdunik CAMK 22 stycznia 2025 ## Papers 2024 Journal of High Energy Astrophysics 42 (2024) 52–62 Evidence for 3XMM J185246.6+003317 as a massive magnetar with a low magnetic field Rafael C.R. de Lima ^{a,*}, Jonas P. Pereira ^{b,c}, Jaziel G. Coelho ^{c,d}, Rafael C. Nunes ^{d,e}, Paulo E. Stecchini ^{d,f}, Manuel Castro ^g, Pierre Gomes ^a, Rodrigo R. da Silva ^d, Claudia V. Rodrigues ^d, José C.N. de Araujo ^d, Michał Bejger ^{b,h}, Paweł Haensel ^b, J. Leszek Zdunik ^b A&A, 690, A301 (2024) https://doi.org/10.1051/0004-6361/202348340 © The Authors 2024 #### Layers of electron captures in the crust of accreting neutron stars L. Suleiman^{1,2,3,*}, J. L. Zdunik², and P. Haensel² Nicholas and Lee Begovich Center for Gravitational Wave Physics and Astronomy, California State University Fullerton, Fullerton, California 92831, USA ² Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland ³ Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, Université Paris Cité, CNRS, F-92190 Meudon, France #### Accretion vs. reactions | Classical approach | Reaction rate vs accretion | |---------------------------------------|--| | Infinite reaction rate | Reaction rate depends on experimental data, pressure and abundance of nuclei | | Local equilibrium (t,P) | Matter not in equilibrium - reactions take place | | Single nucleus approximation | In the reaction layer mixture of parent and grand-daughter nuclei (A,Z), (A,Z-2) | | Reaction layer - infinitesimally thin | Time evolution of reaction layer (finite size) | ## Reaction Layer $$(A, Z) + e^{-} \rightarrow (A, Z - 1) + \nu \text{ slow },$$ $(A, Z - 1) + e^{-} \rightarrow (A, Z - 2) + \nu \text{ fast}$ Mixture of two nuclides (isobars) Parent nuclei N_0 (A, Z). Grand-daughter nuclei N_2 (A, Z-2) $$X = \frac{N_0}{N_0 + N_2}$$ P_{th} threshold pressure - $\mu(P_{th},A,Z)=\mu(P_{th},A,Z-1)$ - corresponds to infinite reaction rate $\delta P=P-P_{th}>0$ The accretion timescale: $$\tau_{acc}(\delta P) = \frac{4\pi R^4 \delta P}{GM\dot{M}}$$ - increasing function of δP The reaction timescale: $$\tau_{react} = \tau_{react}(\delta P, X; (N, Z))$$ - decreasing function of δP $$\partial_{\tau}(nX) + \partial_{z}(vnX) = -nX\mathscr{R}_{ec}.$$ ## Evolution of the reaction layer ### Conclusions - The heat sources are time- and pressure- dependent - The total heat release is a function of astrophysical (active and quiescent time) and microscopic (reaction rate) parameters. - These parameters should be considered separately and individually for each reaction layer. - Thickness of the reaction layers: $\delta P = 10^{-7} \text{ MeV/fm}^3 10 \text{ cm} 10 \text{ m}$ - Shell thickness (between reaction layers) $\Delta P \sim 10^{-5} 10^{-4} \; \mathrm{MeV/fm^3}$ - Energy release larger than in the case of instantaneous reaction (by $\sim 20\,\%$)