

CUBES, WST & Gaia

Rodolfo Smiljanic

(Credits: ESA/Gaia/DPAC, Stefan Payne-Wardenaar - CC BY-SA 3.0 IGO)

CAMK/PAN Warsaw

CAMK Annual Meeting, 22-23 January, 2025

Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

CUBES

Cassegrain U-Band Efficient Spectrograph

CAMK Annual Meeting

22/01/2025

What is CUBES?

- Cassegrain U-Band Efficient Spectrograph (Genoni et al. 2024)
 - Ground near-UV (300-405 nm)
 - High-efficiency
 - Two resolutions (R~6000, R~23 000) with two image slicers
 - To be installed at the 8m ESO's VLT (by 2029)
 - Consortium: Italy (leader; PI S. Covino), Germany, UK, Brazil, Poland + New member: Slovenia

Project during 2024

- CUBES Science Meeting (17-19 January), Naples, Italy
 - Working group on ozone absorption (monitoring on-going with ESO)
- CUBES Team at SPIE Astronomical Telescopes + Instrumentation, 2024, Yokohama, Japan:
 - → 6 contributions (3 as co-I)
- Major tenders started (or soon): CCDs, image slicers, grating, spectrograph optics
- Final Design Review (FDR) on Oct. 2024
 - Three critical action items pending to be finished by April
- Phase D kick-off: February / March 2025

Milestone	Schedule	
Entry into force of the CA	— 15 Гсb. 2022	
KOM with ESO	24 Mar. 2022	
PDR	3 0 Nov. 1 Dec. 2022	
Detector LLI Review	0 Jul. 2023	
Optics LLI Review	<u> 16 Nov. 2023</u>	
FDR	- 24-25 Oct. 2024	
PAE	Feb. 2029	
PAC	May 2030	

Our participation

CAMK

- Software contributions:
 - 1) Design data reduction pipeline for the photometry mode
 - 2) Design specifications for the observation preparation software
- One new post-doc hired to work on science simulations (Deepak, since Sep. 2024; see his presentation tomorrow)
- Within OPUS/LAP NCN grant (2024-2027):
 - Purchase of Acquisition & Guiding camera (ELSE-I 1k x 1k BI UV3; Axiom Optics)
 - Characterization of A&G (with Heidelberg)
 - Development of imaging mode simulator & imaging mode data reduction SW

(Data Reduction Library Specifications)

Wide-field Spectroscopic Telescope

CAMK Annual Meeting, 22 January 2025

What is the WST?

https://www.wstelescope.com/

- Wide-field Spectroscopic
 Telescope (WST)
- Consortium formed in 2021 (19 institutes in Europe + Australia)
- A 12-m ground-based telescope dedicated to multi-object spectroscopy
 - ESO Expanding Horizons call: next big project for the future: >2040
- Any professional astronomer is welcome to join the extended science team (see link)

Preliminary TLR

Telescope Aperture	12 m, seeing limited		
Telescope FoV	2.5 - 5 deg ²		
MOS LR Multiplex	20,000		
MOS LR Resolution	2,000-7,000		
MOS LR Spec Range	370 (350) - 970 nm	IR ext a late	tension to r stage
MOS HR Multiplex	2,000		
MOS HR Resolution	20,000-40,000		
MOS HR Spec Range	3-4 regions in 350-970 nm		
IFS FoV	3x3 arcmin ²		
IFS Resolution	3,000-5,000		
IFS Spec Range	370-970 nm		
IFS Mosaic	9x9 arcmin ²		
MOS & IFS simultaneous operation			

Project in 2024

- WST Team at SPIE Astronomical Telescopes + Instrumentation, 2024, Yokohama, Japan
 - → 2 contributions (1 as co-I)
- WST Science White Paper; Manieri et al. 2024, arXiv:2403.05398 (194 pages)
 - Cosmology; Extragalactic; Resolved stellar populations; Galactic and stellar; Time domain
- Horizon Europe proposal approved in 2024 (~ 3M €):
 - Three-years study to prepare a conceptual design (Feb. 2025)
 - One postdoc to join CAMK (halftime work on WST)

(Manieri et al. 2024)

Exoplanet, Stellar and Galactic Science

- Four main topics:
 - Origins of the elements
 - Origins of the Milky Way system
 - Origins of stars and planets
 - Stellar evolution
- Except for Gaia-ESO and PFS @ Subaru, all surveys use 4m telescopes
- Except for Gaia-ESO (~7000 stars) and GALAH, all survey spectra with R < 20k
- Reach fainter and more distant sources
- Explore chemical elements missed by other surveys
- Reach higher precision in the abundances

The Gaia Mission

CAMK Annual Meeting, 22 January 2025

Gaia End of Observations

- Not the end of the mission!
- Cold gas (used to control the precise spinning of the spacecraft) ends in February 2025
- Science observations ended in 15 January, 2025 (after 10.5 years of observations)
 - → 2551x10⁹ astrometric, 512x10⁹ photometric, 50x10⁹ spectroscopic CCD measurements (Oct. 2024)
- Start a series of technologies tests
- Gaia passivation: 27th of March
- Sent to an orbit with <1% chance to come back to Earth in 100 years

Gaia DR4 and DR5

- Gaia DR4 is not more of the same
 - Not before mid-2026 →
 - Based on 5.5 years of data →
 - Full catalogues of epoch data →
 - Improvements wrt DR3 →
- Gaia DR5: Legacy archive
 - Not before end-2030 →
 - Full mission (10.5 years) →
 - Some data of internal databases and ≯ possibly software
 - Maintain expertise for next astrometric → mission (Gaia-NIR? > 2040)

Gaia Black Hole 3

26 [mas]

- Gaia BH3 (Gaia collaboration et al. 2024)
 - Outlier found during processing for Gaia Data Release 4
- Great example of the use of epoch data (astrometric + photometric)
- 32.7 Msun object orbiting a metalpoor halo star every 5.5 years

(Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.)

Thank you for your attention