The Friedman model

The metric
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The Einstein field equations
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subtracting the second equation from the first, we get
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some time ago we introduced the Hubble constant via v = H - d,

it turns out that it is connected with the rate of change of the scale factor R(t)

Let us introduce a so called deceleration parameter ¢(t), defined as
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equation (3) can be rewritten as
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equation (2) can be rewritten as
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Using equation (6) can be transformed into:
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H and q are the basic parameters characterizing dynamics of the universe.

How to determine H and q 7

Let us recall the relation 1+ z = R(t.)
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for small z, ¢-z = H - d,
In astronomy the distance-magnitude relation is usually used m = 5log D + M — 5.

Using the luminosity distance this relation can be transformed into (not easy!)
m — M = 5log 2—2 +1.086(1 — o)z — 0.27(1 — qo) (1 + 3qo)2% + 25
0

Some exact solutions of the Friedman equations
Let us consider pressureless gas in a flat universe with A = 0

In this case the equation (2) reduces to
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The energy-momentum conservation law 7%, = 0, reduces to:
o- R® = const . (10)

From equations (9) and (10), it follows that
R(t) oc t2/3

In such matter dominated universe H(t) = 3 and ¢ = 1.

Let us discuss the first obvious consequences:

R(t) ~ t?/3 implies that when t — 0, R(t) — 0



so, the Universe had a beginning !
Since p - R3=const, when R — 0, o0 — oo !l!
Early in 1940-ties George Gamow realized that if the early Universe was very dense
it was also very hot. So let us consider radiation dominated Universe.

Basic thermodynamical properties of radiation:

£rad = 6 - T?*, a — Stefan — Boltzmann constant, preq = §6md ) (11)

From the energy-momentum conservation law it follows that:
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E(gmd . R4) =0, — €yqq - R* = const, or T - R = const .

Equation (2) assumes now the form:
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what leads to:

R(t) ~ t/2.

It means that when R(t) — 0, T(t) — oo !l

The early Universe was very dense and very hot !!!

1
In such radiation dominated universe H (t) = % and ¢ = 1.

Finally let us consider the flat, empty Universe with A £ 0 .

In this case equation (2) assumes a simple form:
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that leads to an exponential solution:



R(t) ~ exp(4/ ATC2 -t).

In such dark energy dominated universe H(t) = A§2 and g = 1.
So summarizing we have:
t2/3 matter dominated universe ,
R(t) ~ /2 radiation dominated universe,

exp(y/ AT62 -t), dark energy dominated universe.

The notion of critical density allows convenient parametrization of the Hubble constant:

H(2) = Ho/Q (1 + 2)* + Qo (1 + 2)3 + Qi (1 + 2)2 + Q. , where

), - represents contribution of radiation, €2, - matter,
Q. - curvature, and €2 - cosmological constant or Dark Energy.

This relation implies that if €2, # 0 the early evolution
of the Universe was dominated by radiation.

Since H(z = 0) = Hy we also have a constrain:
Qr +Qp + Qe+ 04 =1

Current values:

Q, =247-107°h72, Q,, = 0.315 £ 0.007, Q2 = 0.685 & 0.007.

Using the Friedman equations and the Hubble law it is possible to calculate how much time
a light signal emitted at z needed to reach us

1+z= R(t.)’ let us use a common convention R(tg) =1, R(t.) = R(t),
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This equation can be rewritten as:

H(z) = Ho/Q (1 + 2)4 + (1 4+ 2)3 + Q(1 +2)2+ Q4 .
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Usingl%—z:m, and H:g, we find
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Energy scale:

Energy: 1 Gev = 1.6022-10719 J
Temperature: 1 GeV = 1.605-10'3 K
Proton mass: 938.272 MeV
Neutron mass: 939.566 MeV
Electron mass: 0.5110 Mev

Composition of matter at T' ~ 0.2 GeV

Photons, neutrinos, electrons and positrons, miuons, and tauons are in thermal equilibrium
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Reactions between leptons, like

e+—|—,u_<—>17€—|—yu, e_—l—,u+<—>ye+ﬁu,

et +u, <—>u+—|—yu, e+l +v,.
preserve the state of thermal equilibrium.
Reaction rates between different leptons are determined by:

ey = necoe, 'y = nycop, , where

oe, and o0, denote the cross sections for the appropriate reactions.
The state of thermal equilibrium is maintained when I'(T) - ¢t(T") > 1.
When this condition is violated, reactions with neutrinos
are too slow to maintain thermal equilibrium.

At the moment of freeze out, the number density of neutrinos is n, = % Gy,
where g, = Y¥g,; denotes the total number of spin states.

At that epoch neutrons and protons are still in a state of thermal equilibrium,

that is kept due to the reactions:
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However at certain temperature T, ~ 1MeV | T'(Ty) - t(Tx) ~ 1 and
the number density of neutrons relative to protons becomes frozen at a level of:
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) ~ 0.27.

However free neutrons are unstable and they start to decay,
so at onset of the primordial nucleosynthesis > ~ 0.14
P

The state of thermal equilibrium

All particles, depending on their spins, are described by the Fermi-Dirac or Bose-
Einstein phase space distribution:

f(B) = lexp((E — p)/T £1]71,

where E - denotes energy, i chemical potential, and the Boltzmann constant was set to be
equal kg = 1. The number density n, energy density o and pressure p of a dilute, weakly
interacting gas of particles with ¢ internal degrees of freedom is given by;

n= @”fﬁ/f@d?’p,
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where E? = |p]2 + m2.

In kinetic equilibrium, the number density of a nonrelativistic nuclear species A(Z)
with mass number A and charge Z is given by
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where 4 is the chemical potential of the species. If the nuclear reactions that produce
nucleus A out of Z protons and A — Z neutrons occur rapidly compared to the expansion
rate, chemical equilibrium also obtains.

The binding energy of the nuclear species A(Z) is
Bya=Zmy+ (A—Z)m, —ma,
and the abundance of species A(Z) is
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At the onset of nucleosynthesis (T >> 1 MeV, t << 1 sec) the balance between
neutrons and protons is maintained by the week interactions (here v = v,):

n<pt+e +v,

v+n<pte
e++n<—>p+ﬂ.

When the rates for these reaction are rapid compared to the expansion rate H, chemical
equilibrium obtains,
M + Hy = Hp T He

what implies that in chemical equilibrium

Z_: = exp(—Q/T + (pe — i)/ T) ,

where Q = m, —m, = 1.293Mev. Neglecting the chemical potential, the equilibrium value
of the neutron-to-proton ratio is

~ = exp(-Q/T).
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