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The virial theorem:

%of the released GPE is used to heat up
the center of a star,

the other % has to be radiated away



Massive Stars Cook Heavy Elements

The carbon core of a massive star becomes hot enough

(T>7 x 108 K) for carbon to fuse:

12C +12C > **Mg+y| and| '°0 +“*He — °Ne +y

These reactions produce less E per reaction, consuming

fuel faster and faster... g
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—>evolution accelerates
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Binding energy per nucleon (MeV)

http://web.mit.edu/people/jinseok/notes/notes_20031217/notes_20031217.shtml
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Multiple Shell Burning Stages

Advanced nuclear burning
proceeds in a series of
nested shells, giving rise to
an “onion skin” structure

http://www.physics.uc.edu/~hanson/ASTRO/LECTURENOTES/WO07/Death/OnionSkin.png



» Cepheid Variables

Digression: Cepheid Variables

* Young, yellow supergiants with periodic L variation.
* Periods range from 2 days to about 100-120 days.
* 2-10 Mg ~ 10%s T, =5000-6400K

* Brightness fluctuations ~1 magnitude, surface
velocities ~ 40-60 km/s. o

* Located in the disks of spiral galaxies. ,

HST



A Cepheid at max and min

Composite Cepheid
photograph at
maximum (left)
and minimum
(right)
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http://hyperphysics.phy-astr.gsu.edu/hbase/astro/cepheid.html



Leavitt’s Data

Henrietta Leavitt’s SMC Cepheids
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(From Carroll and Ostlie, Modern Astrophysics)
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Cepheid Broken Valve Mechanism

Partial He* ionization zone* is opaque
| and absorbs more energy than necessary
N\ X ./ v/ to balance the weight from higher layers.

- > - Expansion
> < > —
V' S\

*region below surface where helium is partly He* and partly He**



The Valve Mechanism

N Upon expansion,
partial He ionization
zone becomes more
transparent, absorbs
less energy = weight
from higher layers

pushes it back inward.

- Contraction




The Valve Mechanism

w N
— < > <
A >< y Upon compression, partial He ionization zone
o ‘ \ . becomes more opaque again, absorbs more
energy than needed for equilibrium = Expansion

= positive feedback (like pushing someone on a swing; perpetuates instability



e observe m
|» observe P
e read off M

|| = determine distance:
m- M =5(logd) - 5

(m- M +5)

d(pc) =10 >

Absolute magnitude =

ey 10
| Period (days)

http://www.ifa.hawaii.edu/~barnes/ast110_06/trotn/1128a.jpg

Period ~ time for a sound wave to
travel the diameter of the star

Changes in R and T ~10-20%
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http://www.aavso.org/sites/default/files/cepheid.mpeg



» Supernovae

Steps to a Supernova

e °°Fe core means no more E can be extracted

* Mcore > 1.44 M (Chandrasekhar Limit)

core

e 2 CORE COLLAPSE!

e Core still heats up as it collapses, but to no avail, except
photodisintegration!

* ®Fe +y — 13(*He) + 4 n and| *He +y — 2p + 2n

Think about it ... All the star’s previous nucleosynthesis over
many millions of years is undone in seconds!



Neutronization and Collapse

e photodisintegration occurs in < 0.1 second!

* Density is so high that protons and electrons are
crushed into neutrons, which also produces huge
numbers of neutrinos:

A J
N
pt+e —>n+v A
&N
@ neu?rino

* Atoms disappear and become nuclear matter, with
density about 4 x 1014 g/cm?3 !

e ... as if a whole sun collapsed to city size: 10° tons/tsp!

Getty Images



Core Collapse, continued

* When neutronization is
nearly complete, core

Neutron Star

collapse is halted by a L I
combination of neutron

Solid crust
degeneracy pressure’ and ‘ ~1 mile thick

strong-force repulsion.

° The core, W|th R ~ 10 km’ Heavy liquid interior

Mostly neutrons,

has become a NEUTRON with other particles
STAR.

n:p:e=8:1:1

NASA



But what about the rest of the star??

Ca, Si, S, Mg, Ne, O, C layers obliviously
continue to burn, until...

When core collapses, they collapse onto it.

“Stiff” core, plus pressure from all the v
produce a bounce and an outgoing shock
wave that blasts off the outer layers

Energy released allows explosive
nucleosynthesis, producing elements
beyond the Fe peak in binding energy

The rapidly-expanding outer layers get very
luminous, very quickly, producinga TYPE
Il SUPERNOVA

Heavy elements

\ Hydrogen
4

[ron

core\L

Massive star imploding

Hydrogen

Remnant Shock
core wave

Explosion







Supernova Remnants

 The expelled gas interacts with the ISM to make a
SUPERNOVA REMNANT, which glows for ~ 10° years

* CRAB SN was seen in 1054 CE — appears in Chinese records

Copyright © 2005 Pearson Prentice Hall, Inc.




3 Main Nucleosynthesis Sites & Timescales

Massive stars (M>10 Mg) and
SNe II: synthesis of most of the
nuclear species from oxygen
through zinc, and the r-process
heavy elements (7t < 108 years)

Red G/AGB Stars: (1<M<10 Mg)
synthesis of heavy s-process
elements (t > 10%years)

Abundance relative to 10° silicon

SNe la: synthesis of ~ 50-70%
of Fe-peak nuclei not produced
by SNe Il (T > 1.5-2 x10° years)

NS-NS mergers T ~ sec

Adapted from J. Truran
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Expected characteristics of
neutron stars

* Mass ~ 1.4 M,

» Radius ~ 10 - 20 km |

- Density ~ 1017 kg/ms3

* Initial temperature ~ 10 K
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Pulsar - Magnetosphere

rotation axis magnetic axis

9 : * rotation induces
s TC - | \rad.o veam €leCtric quadrupole field

closed —_— "' { /
fieldlines i ] / /

~\W charges pulled out of
=N\ surface, shielding force
| __';_h-:./ql‘ + plasma fills surrounding
~—g\ = » co-rotation with pulsar
et | T o light cylinder:

L o cylinder
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Sound of pulsars

p
Q)

PSR B0329+54 Crab PSR 1937
1.4 Hz Pulsar 645 Hz

30 Hz
typical pulsar

http://www.jb.man.ac.uk/~pulsar/Education/Sounds/sounds.html



Masses
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Black holes

. Mass > 3M

Electric charge ~ 0

Rotation period could be as small as 0.001 s
Does not radiate !!

Strong gravitational field

How to find them 77
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UHURU - the first X-ray satellite
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Remnants of stellar evolution

0.001 < Min/Mo< 0.085 - brown dwarfs

0.085 < Miy/Mo< 8 ~ 12 > white dwarf
planetary nebula Mwo<1.4Mo

8 ~12 < M,/Mo< ~ 20 = neutron star

supernova explosion Mns < 3Mo
M../Mo> ~ 20 = black hole

supernova explosion Mz > 3Mo



Galileo
1564 - 1642










Chemical evolution



https://youtu.be/L7WnIJEJXFo

Astronomical Mendeleev table:
X - fraction of hydrogen (by weight)
Y - fraction of helium

Z - fraction of all other elements
(astronomers call them metals)

X+Y+/Z=1

X@ - 073, Y@ = 0.24 Z@ = 0.03



Population I stars, are, the young stars
confined to the disk of the galaxy and of metal
abundances near the solar value Z ~ 0.03

Population IT stars - the old stars that
appear in the galactic halo and of very low
metal abundance Z < 0.01
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Observations -
-, from starlight
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Size of the Milky Way

* Diameter of the disk 120000 ly
» Thickness of the disk 1000 ly
* Diameter of the galactic halo 300000 ly

» Distance of the Sun from the galactic
center ~ 25000 ly

* Mass ~ 120x10° M,







